#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Highly Precise and Developmentally Programmed Genome Assembly in Requires Ligase IV–Dependent End Joining


During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5′ overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5′-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3′ ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics.


Vyšlo v časopise: Highly Precise and Developmentally Programmed Genome Assembly in Requires Ligase IV–Dependent End Joining. PLoS Genet 7(4): e32767. doi:10.1371/journal.pgen.1002049
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002049

Souhrn

During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5′ overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5′-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3′ ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics.


Zdroje

1. KeeneySNealeMJ 2006 Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 34 523 525

2. Soulas-SprauelPRivera-MunozPMalivertLLe GuyaderGAbramowskiV 2007 V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene 26 7780 7791

3. KapitonovVVJurkaJ 2005 RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3 e181 doi:10.1371/journal.pbio.0030181

4. GellertM 2002 V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 71 101 132

5. LieberMR 2010 The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu Rev Biochem

6. JahnCLKlobutcherLA 2002 Genome remodeling in ciliated protozoa. Annu Rev Microbiol 56 489 520

7. YaoMCDuharcourtSChalkerDL 2002 Genome-wide rearrangements of DNA in ciliates. CraigNLCraigieRGellertMLambowitzAM Mobile DNA II Washington, D.C. ASM Press 730 758

8. PrescottDM 1994 The DNA of ciliated protozoa. Microbiol Rev 58 233 267

9. Le MouelAButlerACaronFMeyerE 2003 Developmentally regulated chromosome fragmentation linked to imprecise elimination of repeated sequences in paramecia. Eukaryot Cell 2 1076 1090

10. BétermierM 2004 Large-scale genome remodelling by the developmentally programmed elimination of germ line sequences in the ciliate Paramecium. Res Microbiol 155 399 408

11. GratiasABétermierM 2003 Processing of double-strand breaks is involved in the precise excision of paramecium internal eliminated sequences. Mol Cell Biol 23 7152 7162

12. BaudryCMalinskySRestituitoMKapustaARosaS 2009 PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev 23 2478 2483

13. GratiasALepereGGarnierORosaSDuharcourtS 2008 Developmentally programmed DNA splicing in Paramecium reveals short-distance crosstalk between DNA cleavage sites. Nucleic Acids Res 36 3244 3251

14. SavelievSVCoxMM 1995 Transient DNA breaks associated with programmed genomic deletion events in conjugating cells of Tetrahymena thermophila. Genes Dev 9 248 255

15. WilliamsKDoakTGHerrickG 1993 Developmental precise excision of Oxytricha trifallax telomere-bearing elements and formation of circles closed by a copy of the flanking target duplication. Embo J 12 4593 4601

16. BétermierMDuharcourtSSeitzHMeyerE 2000 Timing of developmentally programmed excision and circularization of Paramecium internal eliminated sequences. Mol Cell Biol 20 1553 1561

17. AuryJMJaillonODuretLNoelBJubinC 2006 Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444 171 178

18. EllenbergerTTomkinsonAE 2008 Eukaryotic DNA ligases: structural and functional insights. Annu Rev Biochem 77 313 338

19. SinhaKMHinesJCDowneyNRayDS 2004 Mitochondrial DNA ligase in Crithidia fasciculata. Proc Natl Acad Sci U S A 101 4361 4366

20. DowneyNHinesJCSinhaKMRayDS 2005 Mitochondrial DNA ligases of Trypanosoma brucei. Eukaryot Cell 4 765 774

21. McVeyMLeeSE 2008 MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 24 529 538

22. BurtonPMcBrideDJWilkesJMBarryJDMcCullochR 2007 Ku heterodimer-independent end joining in Trypanosoma brucei cell extracts relies upon sequence microhomology. Eukaryot Cell 6 1773 1781

23. CritchlowSEBowaterRPJacksonSP 1997 Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7 588 598

24. AhnesorgPSmithPJacksonSP 2006 XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124 301 313

25. BuckDMalivertLde ChassevalRBarraudAFondanecheMC 2006 Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124 287 299

26. FrankKMSekiguchiJMSeidlKJSwatWRathbunGA 1998 Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396 173 177

27. BarnesDEStampGRosewellIDenzelALindahlT 1998 Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol 8 1395 1398

28. GaoYSunYFrankKMDikkesPFujiwaraY 1998 A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95 891 902

29. ArnaizOGoutJFBetermierMBouhoucheKCohenJ 2010 Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia. BMC Genomics 11 547

30. BergerJD 1973 Nuclear differentiation and nucleic acid synthesis in well-fed exconjugants of Paramecium aurelia. Chromosoma 42 247 268

31. KungCChangSYSatowYHoutenJVHansmaH 1975 Genetic dissection of behavior in paramecium. Science 188 898 904

32. GalvaniASperlingL 2002 RNA interference by feeding in Paramecium. Trends Genet 18 11 12

33. BergerJD 1973 Selective inhibition of DNA synthesis in macronuclear fragments in Paramecium aurelia exconjugants and its reversal during macronuclear regeneration. Chromosoma 44 33 48

34. MatsudaAForneyJD 2006 The SUMO pathway is developmentally regulated and required for programmed DNA elimination in Paramecium tetraurelia. Eukaryot Cell 5 806 815

35. BergerJD 1974 Selective autolysis of nuclei as a source of DNA precursors in Paramecium aurelia exconjugants. J Protozool 21 145 152

36. DuharcourtSLepereGMeyerE 2009 Developmental genome rearrangements in ciliates: a natural genomic subtraction mediated by non-coding transcripts. Trends Genet 25 344 350

37. NowackiMLandweberLF 2009 Epigenetic inheritance in ciliates. Curr Opin Microbiol 12 638 643

38. MatsudaAShiehAWChalkerDLForneyJD 2010 The conjugation-specific Die5 protein is required for development of the somatic nucleus in both Paramecium and Tetrahymena. Eukaryot Cell 9 1087 1099

39. ChengCYVogtAMochizukiKYaoMC 2010 A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell 21 1753 1762

40. NowackiMHigginsBPMaquilanGMSwartECDoakTG 2009 A functional role for transposases in a large eukaryotic genome. Science 324 935 938

41. GarnierOSerranoVDuharcourtSMeyerE 2004 RNA-mediated programming of developmental genome rearrangements in Paramecium tetraurelia. Mol Cell Biol 24 7370 7379

42. BudmanJKimSAChuG 2007 Processing of DNA for nonhomologous end-joining is controlled by kinase activity and XRCC4/ligase IV. J Biol Chem 282 11950 11959

43. MitraRFain-ThorntonJCraigNL 2008 piggyBac can bypass DNA synthesis during cut and paste transposition. Embo J 27 1097 1109

44. Guirouilh-BarbatJHuckSBertrandPPirzioLDesmazeC 2004 Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell 14 611 623

45. ArnaizOCainSCohenJSperlingL 2007 ParameciumDB: a community resource that integrates the Paramecium tetraurelia genome sequence with genetic data. Nucleic Acids Res 35 D439 444

46. SibandaBLCritchlowSEBegunJPeiXYJacksonSP 2001 Crystal structure of an Xrcc4-DNA ligase IV complex. Nat Struct Biol 8 1015 1019

47. TamuraKDudleyJNeiMKumarS 2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24 1596 1599

48. CombetCBlanchetCGeourjonCDeleageG 2000 NPS@: network protein sequence analysis. Trends Biochem Sci 25 147 150

49. TimmonsLFireA 1998 Specific interference by ingested dsRNA. Nature 395 854

50. EdgarRC 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

51. GongCBongiornoPMartinsAStephanouNCZhuH 2005 Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 12 304 312

52. ZhuHShumanS 2007 Characterization of Agrobacterium tumefaciens DNA ligases C and D. Nucleic Acids Res 35 3631 3645

53. GaboriaudCBisseryVBenchetritTMornonJP 1987 Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett 224 149 155

54. CallebautICourvalinJCWormanHJMornonJP 1997 Hydrophobic cluster analysis reveals a third chromodomain in the Tetrahymena Pdd1p protein of the chromo superfamily. Biochem Biophys Res Commun 235 103 107

55. EudesRLe TuanKDelettreJMornonJPCallebautI 2007 A generalized analysis of hydrophobic and loop clusters within globular protein sequences. BMC Struct Biol 7 2

56. CallebautIMalivertLFischerAMornonJPRevyP 2006 Cernunnos interacts with the XRCC4 x DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor Nej1. J Biol Chem 281 13857 13860

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#