High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm
Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis.
Vyšlo v časopise:
High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm. PLoS Genet 7(6): e32767. doi:10.1371/journal.pgen.1002126
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002126
Souhrn
Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis.
Zdroje
1. KöhlerCWeinhofer-MolischI 2010 Mechanisms and evolution of genomic imprinting in plants. Heredity 105 57 63
2. JullienPEBergerF 2009 Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr Opin Plant Biol 12 637 642
3. JahnkeSScholtenS 2009 Epigenetic resetting of a gene imprinted in plant embryos. Curr Biol 19 1677 1681
4. BergerF 2003 Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6 42 50
5. DrewsGNYadegariR 2002 Development and function of the angiosperm female gametophyte. Annu Rev Genet 36 99 124
6. GehringMBubbKLHenikoffS 2009 Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324 1447 1451
7. HsiehTFIbarraCASilvaPZemachAEshed-WilliamsL 2009 Genome-wide demethylation of Arabidopsis endosperm. Science 324 1451 1454
8. JullienPEMosqunaAIngouffMSakataTOhadN 2008 Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol 6 e194 doi:10.1371/journal.pbio.0060194
9. TeixeiraFKColotV 2010 Repeat elements and the Arabidopsis DNA methylation landscape. Heredity 105 14 23
10. KöhlerCPageDRGagliardiniVGrossniklausU 2005 The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 37 28 30
11. BarouxCGagliardiniVPageDRGrossniklausU 2006 Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev 20 1081 1086
12. GehringMHuhJHHsiehTFPentermanJChoiY 2006 DEMETER DNA glycosylase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation. Cell 124 495 506
13. JullienPEKatzAOlivaMOhadNBergerF 2006 Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol 16 486 492
14. Fitz GeraldJNHuiPSBergerF 2009 Polycomb group-dependent imprinting of the actin regulator AtFH5 regulates morphogenesis in Arabidopsis thaliana. Development 136 3399 3404
15. HennigLDerkachevaM 2009 Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet 25 414 423
16. ChoiYGehringMJohnsonLHannonMHaradaJJ 2002 DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110 33 42
17. XiaoWGehringMChoiYMargossianLPuH 2003 Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 5 891 901
18. MakarevichGVillarCBErilovaAKöhlerC 2008 Mechanism of PHERES1 imprinting in Arabidopsis. J Cell Sci 121 906 912
19. VillarCBErilovaAMakarevichGTröschRKöhlerC 2009 Control of PHERES1 imprinting in Arabidopsis by direct tandem repeats. Mol Plant 2 654 660
20. BarlowDP 1993 Methylation and imprinting: from host defense to gene regulation? Science 260 309 310
21. HaigDWestobyM 1989 Parent specific gene expression and the triploid endosperm. Am Nature 134 147 155
22. TriversRBurtA 1999 Kinship and genomic imprinting. Results Probl Cell Differ 25 1 21
23. ReikWConstanciaMFowdenAAndersonNDeanW 2003 Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 547 35 44
24. ChaudhuryAMMingLMillerCCraigSDennisES 1997 Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94 4223 4228
25. KiyosueTOhadNYadegariRHannonMDinnenyJ 1999 Control of fertilization-independent endosperm development by the MEDEA Polycomb gene in Arabidopsis. Proc Natl Acad Sci U S A 96 4186 4191
26. TiwariSSchulzRIkedaYDythamLBravoJ 2008 MATERNALLY EXPRESSED PAB C-TERMINAL, a Novel Imprinted Gene in Arabidopsis, Encodes the Conserved C-Terminal Domain of Polyadenylate Binding Proteins. Plant Cell 20 2387 2398
27. SpillaneCSchmidKJLaoueille-DupratSPienSEscobar-RestrepoJM 2007 Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 448 349 352
28. MiyakeTTakebayashiNWolfDE 2009 Possible diversifying selection in the imprinted gene, MEDEA, in Arabidopsis. Mol Biol Evol 26 843 857
29. O'ConnellMJLoughranNBWalshTADonoghueMTSchmidKJ 2010 A phylogenetic approach to test for evidence of parental conflict or gene duplications associated with protein-encoding imprinted orthologous genes in placental mammals. Mamm Genome 21 486 498
30. OssowskiSSchneebergerKClarkRMLanzCWarthmannN 2008 Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18 2024 2033
31. KinoshitaTMiuraAChoiYKinoshitaYCaoX 2004 One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303 521 523
32. KermicleJ 1970 Dependence of the R-mottled aleurone phenotype in maize on the mode of sexual transmission. Genetics 66 69 85
33. ChaudhuriSMessingJ 1994 Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci U S A 91 4867 4871
34. ChristensenCKingEJordanJDrewsGN 1997 Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sexual Plant Reproduction 10 49 64
35. BayerMNawyTGiglioneCGalliMMeinnelT 2009 Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323 1485 1488
36. ColomboMMasieroSVanzulliSLardelliPKaterMM 2008 AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 54 1037 1048
37. de FolterSImminkRGKiefferMParenicovaLHenzSR 2005 Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17 1424 1433
38. KangIHSteffenJGPortereikoMFLloydADrewsGN 2008 The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20 635 647
39. RaiKHugginsIJJamesSRKarpfARJonesDA 2008 DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135 1201 1212
40. PoppCDeanWFengSCokusSJAndrewsS 2010 Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463 1101 1105
41. ZilbermanDGehringMTranRKBallingerTHenikoffS 2007 Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39 61 69
42. Bourc'hisDVoinnetO 2010 A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330 617 622
43. FengSJacobsenSEReikW 2010 Epigenetic reprogramming in plant and animal development. Science 330 622 627
44. JullienPEKinoshitaTOhadNBergerF 2006 Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18 1360 1372
45. HsiehTFShinJUzawaRSilvaPCohenS 2011 Inaugural Article: Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci U S A
46. ErilovaABrownfieldLExnerVRosaMTwellD 2009 Imprinting of the Polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 5 e1000663 doi:10.1371/journal.pgen.1000663
47. TiwariSSpielmanMSchulzROakeyRJKelseyG 2010 Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana. BMC Plant Biol 10 72
48. JullienPEBergerF 2010 Parental genome dosage imbalance deregulates imprinting in Arabidopsis. PLoS Genet 6 e1000885 doi:10.1371/journal.pgen.1000885
49. SpillaneCBarouxCEscobar-RestrepoJMPageDRLaoueilleS 2004 Transposons and tandem repeats are not involved in the control of genomic imprinting at the MEDEA locus in Arabidopsis. Cold Spring Harb Symp Quant Biol 69 465 475
50. WanLBBartolomeiMS 2008 Regulation of imprinting in clusters: noncoding RNAs versus insulators. Adv Genet 61 207 223
51. DilkesBPSpielmanMWeizbauerRWatsonBBurkart-WacoD 2008 The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol 6 e308 doi:10.1371/journal.pbio.0060308
52. WeinhoferIHehenbergerERoszakPHennigLKöhlerC 2010 H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet 6 e1001152 doi:10.1371/journal.pgen.1001152
53. ChanSWHendersonIRZhangXShahGChienJS 2006 RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in arabidopsis. PLoS Genet 2 e83 doi:10.1371/journal.pgen.0020083
54. ListerRO'MalleyRCTonti-FilippiniJGregoryBDBerryCC 2008 Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133 523 536
55. SlotkinRKVaughnMBorgesFTanurdzicMBeckerJD 2009 Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136 461 472
56. KapitonovVVJurkaJ 2007 Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23 521 529
57. HollisterJDGautBS 2007 Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 24 2515 2524
58. SweredoskiMDeRose-WilsonLGautBS 2008 A comparative computational analysis of nonautonomous helitron elements between maize and rice. BMC Genomics 9 467
59. SazeHScheidOMPaszkowskiJ 2003 Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 34 65 69
60. AbouelhodaMKurtzSOhlebuschE 2004 Replacing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms 2 53 86
61. BenjaminiYHochbergY 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 57 289 300
62. LeBHChengCBuiAQWagmaisterJAHenryKF 2010 Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A 107 8063 8070
63. SchmidMDavisonTSHenzSRPapeUJDemarM 2005 A gene expression map of Arabidopsis thaliana development. Nat Genet 37 501 506
64. ZhangXClarenzOCokusSBernatavichuteYVPellegriniM 2007 Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5 e129 doi:10.1371/journal.pbio.0050129
65. SaeedAISharovVWhiteJLiJLiangW 2003 TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34 374 378
66. EdgarRC 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797
67. RicePLongdenIBleasbyA 2000 EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16 276 277
68. YangZ 1997 PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13 555 556
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 6
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Statistical Inference on the Mechanisms of Genome Evolution
- Recurrent Chromosome 16p13.1 Duplications Are a Risk Factor for Aortic Dissections
- Chromosomal Macrodomains and Associated Proteins: Implications for DNA Organization and Replication in Gram Negative Bacteria
- Maps of Open Chromatin Guide the Functional Follow-Up of Genome-Wide Association Signals: Application to Hematological Traits