Natural Allelic Variation Defines a Role for : Trichome Cell Fate Determination
The molecular nature of biological variation is not well understood. Indeed, many questions persist regarding the types of molecular changes and the classes of genes that underlie morphological variation within and among species. Here we have taken a candidate gene approach based on previous mapping results to identify the gene and ultimately a polymorphism that underlies a trichome density QTL in Arabidopsis thaliana. Our results show that natural allelic variation in the transcription factor ATMYC1 alters trichome density in A. thaliana; this is the first reported function for ATMYC1. Using site-directed mutagenesis and yeast two-hybrid experiments, we demonstrate that a single amino acid replacement in ATMYC1, discovered in four ecotypes, eliminates known protein–protein interactions in the trichome initiation pathway. Additionally, in a broad screen for molecular variation at ATMYC1, including 72 A. thaliana ecotypes, a high-frequency block of variation was detected that results in >10% amino acid replacement within one of the eight exons of the gene. This sequence variation harbors a strong signal of divergent selection but has no measurable effect on trichome density. Homologs of ATMYC1 are pleiotropic, however, so this block of variation may be the result of natural selection having acted on another trait, while maintaining the trichome density role of the gene. These results show that ATMYC1 is an important source of variation for epidermal traits in A. thaliana and indicate that the transcription factors that make up the TTG1 genetic pathway generally may be important sources of epidermal variation in plants.
Vyšlo v časopise:
Natural Allelic Variation Defines a Role for : Trichome Cell Fate Determination. PLoS Genet 7(6): e32767. doi:10.1371/journal.pgen.1002069
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002069
Souhrn
The molecular nature of biological variation is not well understood. Indeed, many questions persist regarding the types of molecular changes and the classes of genes that underlie morphological variation within and among species. Here we have taken a candidate gene approach based on previous mapping results to identify the gene and ultimately a polymorphism that underlies a trichome density QTL in Arabidopsis thaliana. Our results show that natural allelic variation in the transcription factor ATMYC1 alters trichome density in A. thaliana; this is the first reported function for ATMYC1. Using site-directed mutagenesis and yeast two-hybrid experiments, we demonstrate that a single amino acid replacement in ATMYC1, discovered in four ecotypes, eliminates known protein–protein interactions in the trichome initiation pathway. Additionally, in a broad screen for molecular variation at ATMYC1, including 72 A. thaliana ecotypes, a high-frequency block of variation was detected that results in >10% amino acid replacement within one of the eight exons of the gene. This sequence variation harbors a strong signal of divergent selection but has no measurable effect on trichome density. Homologs of ATMYC1 are pleiotropic, however, so this block of variation may be the result of natural selection having acted on another trait, while maintaining the trichome density role of the gene. These results show that ATMYC1 is an important source of variation for epidermal traits in A. thaliana and indicate that the transcription factors that make up the TTG1 genetic pathway generally may be important sources of epidermal variation in plants.
Zdroje
1. FalconerDSMackayTFC 1996 Introduction to Quantitative Genetics. Harlow, UK Addison Wesley Longman
2. LynchMWalshB 1998 Genetics and Analysis of Quantitative Traits. Sunderland, MA Sinauer Associates
3. KoornneefMAlonso-BlancoCVreugdenhilD 2004 Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55 141 172
4. MackayTF 2010 Mutations and quantitative genetic variation: lessons from Drosophila. Philos Trans R Soc Lond B Biol Sci 365 1229 1239
5. StinchcombeJRHoekstraHE 2008 Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100 158 170
6. AtwellSHuangYSVilhjalmssonBJWillemsGHortonM 2010 Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 627 631
7. BanghamJObbardDJKimKWHaddrillPRJigginsFM 2007 The age and evolution of an antiviral resistance mutation in Drosophila melanogaster. Proc Biol Sci 274 2027 2034
8. EhrenreichIMTorabiNJiaYKentJMartisS Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464 1039 1042
9. WeigelDNordborgM 2005 Natural variation in Arabidopsis. How do we find the causal genes? Plant Physiol 138 567 568
10. El-AssalSEDAlonso-BlancoCPeetersAJRazVKoornneefM 2001 A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29 435 440
11. FlowersJMHanzawaYHallMCMooreRCPuruggananMD 2009 Population genomics of the Arabidopsis thaliana flowering time gene network. Mol Biol Evol 26 2475 2486
12. JohansonUWestJListerCMichaelsSAmasinoR 2000 Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290 344 347
13. MichaelsSDHeYScortecciKCAmasinoRM 2003 Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA 100 10102 10107
14. BurkeACNelsonCEMorganBATabinC 1995 Hox genes and the evolution of vertebrate axial morphology. Development 121 333 346
15. Des MaraisDLRausherMD 2010 Parallel evolution at multiple levels in the origin of hummingbird pollinated flowers in Ipomoea. Evolution 64 2044 2054
16. JeongSRebeizMAndolfattoPWernerTTrueJ 2008 The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132 783 793
17. OrrHAMaslyJPPresgravesDC 2004 Speciation genes. Curr Opin Genet Dev 14 675 679
18. PhadnisNOrrHA 2009 A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323 376 379
19. KingMCWilsonAC 1975 Evolution at two levels in humans and chimpanzees. Science 188 107 116
20. SternDLOrgogozoV 2008 The loci of evolution: how predictable is genetic evolution? Evolution 62 2155 2177
21. Alonso-BlancoCAartsMGBentsinkLKeurentjesJJReymondM 2009 What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21 1877 1896
22. RheeSYBeavisWBerardiniTZChenGDixonD 2003 The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31 224 228
23. TonsorSJAlonso-BlancoCKoornneefM 2005 Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant, Cell and Environment 28 2 20
24. SinghRS 2003 Darwin to DNA, molecules to morphology: the end of classical population genetics and the road ahead. Genome 46 938 942
25. TheokritoffG 2991 Review: Biotic and abiotic factors in evolution. BioScience 42 212 213
26. BuckleyTN 2005 The control of stomata by water balance. New Phytol 168 275 292
27. TabaeizadehZ 1998 Drought-induced responses in plant cells. Int Rev Cytol 182 193 247
28. GilroySJonesDL 2000 Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5 56 60
29. SchnallJAQuatranoRS 1992 Abscisic acid elicits the water-stress response in root hairs of Arabidopsis thaliana. Plant Physiol 100 216 218
30. ClaussMJDietelSSchubertGMitchell-OldsT 2006 Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32 2351 2373
31. LopezAVVogelSMachadoIC 2002 Secretory trichomes, a substitutive floral nectar source in Lundia A. DC. (Bignoniaceae), a genus lacking a functional disc. Annals of Botany 90 169 174
32. MauricioR 1998 Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Nat 151 20 28
33. MendezMJonesDGManetasY 1999 Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant Pinguicula vulgaris. New Phytologist 144 275 282
34. SaitoNHarborneJB 1992 Correlations betwen anthocyanin type, pollinator and flower color in the Labiatae. Phytochemistry 31 3009 3015
35. WesternTLSkinnerDJHaughnGW 2000 Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122 345 356
36. RamsayNAGloverBJ 2005 MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10 63 70
37. HilscherJSchlottererCHauserMT 2009 A single amino acid replacement in ETC2 shapes trichome patterning in natural Arabidopsis populations. Curr Biol 19 1747 1751
38. LarkinJCYoungNPriggeMMarksMD 1996 The control of trichome spacing and number in Arabidopsis. Development 122 997 1005
39. MauricioR 2005 Ontogenetics of QTL: the genetic architecture of trichome density over time in Arabidopsis thaliana. Genetica 123 75 85
40. SymondsVVGodoyAVAlconadaTBottoJFJuengerTE 2005 Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics 169 1649 1658
41. HeimMAJakobyMWerberMMartinCWeisshaarB 2003 The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20 735 747
42. Toledo-OrtizGHuqEQuailPH 2003 The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15 1749 1770
43. MaesLInzeDGoossensA 2008 Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves. Plant Physiol 148 1453 1464
44. PayneCTZhangFLloydAM 2000 GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156 1349 1362
45. ZhangFGonzalezAZhaoMPayneCTLloydA 2003 A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130 4859 4869
46. UraoTYamaguchi-ShinozakiKMitsukawaNShibataDShinozakiK 1996 Molecular cloning and characterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Mol Biol 32 571 576
47. ZimmermannIMHeimMAWeisshaarBUhrigJF 2004 Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40 22 34
48. NordborgMHuTTIshinoYJhaveriJToomajianC 2005 The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3 e196 doi:10.1371/journal.pbio.0030196
49. SchmidKJRamos-OnsinsSRingys-BecksteinHWeisshaarBMitchell-OldsT 2005 A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics 169 1601 1615
50. KimuraM 1977 Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267 275 276
51. PresgravesDCBalagopalanLAbmayrSMOrrHA 2003 Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423 715 719
52. MorohashiKGrotewoldE 2009 A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet 5 e1000396 doi:10.1371/journal.pgen.1000396
53. InnanHTajimaFTerauchiRMiyashitaNT 1996 Intragenic recombination in the Adh locus of the wild plant Arabidopsis thaliana. Genetics 143 1761 1770
54. KawabeAInnanHTerauchiRMiyashitaNT 1997 Nucleotide polymorphism in the acidic chitinase locus (ChiA) region of the wild plant Arabidopsis thaliana. Mol Biol Evol 14 1303 1315
55. TianDArakiHStahlEBergelsonJKreitmanM 2002 Signature of balancing selection in Arabidopsis. Proc Natl Acad Sci U S A 99 11525 11530
56. HichriIHeppelSCPilletJLeonCCzemmelS 2010 The Basic Helix-Loop-Helix Transcription Factor MYC1 Is Involved in the Regulation of the Flavonoid Biosynthesis Pathway in Grapevine. Mol Plant
57. RockmanMVSternDL 2008 Tinker where the tinkering's good. Trends Genet 24 317 319
58. SokalRRRohlfFJ 1995 Biometry. New York W. H. Freeman and Co
59. DoyleJDoyleJ 1987 A rapid DNA isolation procedure for small quantitites of fresh leaf material. Phytochem Bull 19 11 15
60. ThompsonJDGibsonTJPlewniakFJeanmouginFHigginsDG 1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876 4882
61. HallTA 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Set 41 95 98
62. RozasJSanchez-DelBarrioJCMesseguerXRozasR 2003 DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 2496 2497
63. NeiM 1987 Molecular evolutionary genetics. New York, NY Columbia University Press
64. WattersonGA 1975 On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7 256 276
65. ShiuSHKarlowskiWMPanRTzengYHMayerKF 2004 Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16 1220 1234
66. Van OoijenJ 2004 MapQTL 5, Software for the mapping of quantitative trait loci in experimental populations. Wageningen, Netherlands Kyazma B. V
67. AranzanaMJKimSZhaoKBakkerEHortonM 2005 Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1 e60 doi:10.1371/journal.pgen.0010060
68. LanderESSchorkNJ 1994 Genetic dissection of complex traits. Science 265 2037 2048
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 6
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Statistical Inference on the Mechanisms of Genome Evolution
- Recurrent Chromosome 16p13.1 Duplications Are a Risk Factor for Aortic Dissections
- Chromosomal Macrodomains and Associated Proteins: Implications for DNA Organization and Replication in Gram Negative Bacteria
- Maps of Open Chromatin Guide the Functional Follow-Up of Genome-Wide Association Signals: Application to Hematological Traits