An Epigenetic Switch Involving Overlapping Fur and DNA Methylation Optimizes Expression of a Type VI Secretion Gene Cluster
Type VI secretion systems (T6SS) are macromolecular machines of the cell envelope of Gram-negative bacteria responsible for bacterial killing and/or virulence towards different host cells. Here, we characterized the regulatory mechanism underlying expression of the enteroagregative Escherichia coli sci1 T6SS gene cluster. We identified Fur as the main regulator of the sci1 cluster. A detailed analysis of the promoter region showed the presence of three GATC motifs, which are target of the DNA adenine methylase Dam. Using a combination of reporter fusion, gel shift, and in vivo and in vitro Dam methylation assays, we dissected the regulatory role of Fur and Dam-dependent methylation. We showed that the sci1 gene cluster expression is under the control of an epigenetic switch depending on methylation: fur binding prevents methylation of a GATC motif, whereas methylation at this specific site decreases the affinity of Fur for its binding box. A model is proposed in which the sci1 promoter is regulated by iron availability, adenine methylation, and DNA replication.
Vyšlo v časopise:
An Epigenetic Switch Involving Overlapping Fur and DNA Methylation Optimizes Expression of a Type VI Secretion Gene Cluster. PLoS Genet 7(7): e32767. doi:10.1371/journal.pgen.1002205
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002205
Souhrn
Type VI secretion systems (T6SS) are macromolecular machines of the cell envelope of Gram-negative bacteria responsible for bacterial killing and/or virulence towards different host cells. Here, we characterized the regulatory mechanism underlying expression of the enteroagregative Escherichia coli sci1 T6SS gene cluster. We identified Fur as the main regulator of the sci1 cluster. A detailed analysis of the promoter region showed the presence of three GATC motifs, which are target of the DNA adenine methylase Dam. Using a combination of reporter fusion, gel shift, and in vivo and in vitro Dam methylation assays, we dissected the regulatory role of Fur and Dam-dependent methylation. We showed that the sci1 gene cluster expression is under the control of an epigenetic switch depending on methylation: fur binding prevents methylation of a GATC motif, whereas methylation at this specific site decreases the affinity of Fur for its binding box. A model is proposed in which the sci1 promoter is regulated by iron availability, adenine methylation, and DNA replication.
Zdroje
1. BingleLEBaileyCMPallenMJ 2008 Type VI secretion: a beginner's guide. Curr Opin Microbiol 11 3 8
2. CascalesE 2008 The Type VI secretion toolkit. EMBO Rep 9 735 41
3. FillouxAHachaniABlevesS 2008 The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154 1570 83
4. AschtgenMSBernardCSDe BentzmannSLloubèsRCascalesE 2008 SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol 190 7523 31
5. AschtgenMSGavioliMDessenALloubèsRCascalesE 2010 The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol 75 886 99
6. AschtgenMSThomasMSCascalesE 2010 Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP… what else? Virulence 1 535 40
7. KanamaruS 2009 Structural similarity of tailed phages and pathogenic bacterial secretion systems. Proc Natl Acad Sci USA 106 4067 8
8. MougousJDCuffMERaunserSShenAZhouM 2006 A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312 1526 30
9. PellLGKanelisVDonaldsonLWHowellPLDavidsonAR 2009 The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106 4160 5
10. LeimanPGBaslerMRamagopalUABonannoJBSauderJM 2009 Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106 4154 9
11. KanamaruSLeimanPGKostyuchenkoVAChipmanPRMesyanzhinovVV 2002 Structure of the cell-puncturing device of bacteriophage T4. Nature 415 553 7
12. PukatzkiSMcAuleySBMiyataST 2009 The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12 11 7
13. PukatzkiSMaATSturtevantDKrastinsBSarracinoD 2006 Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103 1528 33
14. HoodRDSinghPHsuFGüvenerTCarlMA 2010 A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7 25 37
15. SchwarzSWestTEBoyerFChiangW-CCarlMA 2010 Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6 e1001068 doi:10.1371/journal.ppat.1001068
16. SchwarzSHoodRDMougousJD 2010 What is type VI secretion doing in all those bugs? Trends Microbiol 18 531 7
17. MacIntyreDLMiyataSTKitaokaMPukatzkiS 2010 The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA 107 19520 4
18. JaniAJCotterPA 2010 Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8 2 6
19. WeberBHasicMChenCWaiSNMiltonDL 2009 Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol 11 3018 28
20. BernardCSBrunetYRGueguenECascalesE 2010 Nooks and crannies in type VI secretion regulation. J Bacteriol 192 3850 60
21. LeungKYSiameBASnowballHMokYK 2011 Type VI secretion regulation: crosstalk and intracellular communication. Curr Opin Microbiol 14 9 15
22. BernardCSBrunetYRGavioliMLloubèsRCascalesE 2011 Regulation of Type VI secretion gene clusters by σ54 and cognate enhancer binding proteins. J Bacteriol 193 2158 2167
23. EscolarLPérez-MartínJde LorenzoV 1999 Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181 6223 9
24. BarrasFMarinusMG 1989 The great GATC: DNA methylation in E. coli. Trends Genet 5 139 43
25. CasadesúsJLowD 2006 Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70 830 56
26. MarinusMGCasadesusJ 2009 Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 33 488 503
27. Løbner-OlesenASkovgaardOMarinusMG 2005 Dam methylation: coordinating cellular processes. Curr Opin Microbiol 8 154 60
28. LowDAWeyandNJMahanMJ 2001 Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun 69 7197 204
29. van der WoudeMW 2011 Phase variation: how to create and coordinate population diversity. Curr Opin Microbiol 14 205 211
30. ErasoJMWeinstockGM 1992 Anaerobic control of colicin E1 production. J Bacteriol 174 5101 9
31. LopilatoJBortnerSBeckwithJ 1986 Mutations in a new chromosomal gene of Escherichia coli K-12, pcnB, reduce plasmid copy number of pBR322 and its derivatives. Mol Gen Genet 205 285 90
32. RossignolMBassetAEspéliOBoccardF 2001 NKBOR, a mini-Tn10-based transposon for random insertion in the chromosome of Gram-negative bacteria and the rapid recovery of sequences flanking the insertion sites in Escherichia coli. Res Microbiol 152 481 5
33. DudleyEGThomsonNRParkhillJMorinNPNataroJP 2006 Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol 61 1267 82
34. EscolarLde LorenzoVPérez-MartínJ 1997 Metalloregulation in vitro of the aerobactin promoter of Escherichia coli by the Fur (ferric uptake regulation) protein. Mol Microbiol 26 799 808
35. EscolarLPérez-MartínJde LorenzoV 1998 Coordinated repression in vitro of the divergent fepA-fes promoters of Escherichia coli by the iron uptake regulation (Fur) protein. J Bacteriol 180 2579 82
36. StojiljkovicIBäumlerAJHantkeK 1994 Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a Fur titration assay. J Mol Biol 236 531 45
37. BroadbentSEDaviesMRvan der WoudeMW 2010 Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism. Mol Microbiol 77 337 53
38. van der WoudeMHaleWBLowDA 1998 Formation of DNA methylation patterns: nonmethylated GATC sequences in gut and pap operons. J Bacteriol 180 5913 20
39. CharlierDGigotDHuysveldNRooversMPiérardA 1995 Pyrimidine regulation of the Escherichia coli and Salmonella typhimurium carAB operons: CarP and integration host factor (IHF) modulate the methylation status of a GATC site present in the control region. J Mol Biol 250 383 91
40. KaminskaRvan der WoudeMW 2010 Establishing and maintaining sequestration of Dam target sites for phase variation of agn43 in Escherichia coli. J Bacteriol 192 1937 45
41. HaagmansWvan der WoudeM 2000 Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol Microbiol 35 877 87
42. WaldronDEOwenPDormanCJ 2002 Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol Microbiol 44 509 20
43. HendersonIROwenP 1999 The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and OxyR. J Bacteriol 181 2132 41
44. HerndayABraatenBLowD 2004 The intricate workings of a bacterial epigenetic switch. Adv Exp Med Biol 547 83 9
45. CorrentiJMunsterVChanTWoudeM 2002 Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant. Mol Microbiol 44 521 32
46. CarpenterBMWhitmireJMMerrellDS 2009 This is not your mother's repressor: the complex role of Fur in pathogenesis. Infect Immun 77 2590 601
47. BabaTAraTHasegawaMTakaiYOkumuraY 2006 Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2 2006.0008
48. DatsenkoKAWannerBL 2000 One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97 6640 5
49. ChaverocheMKGhigoJMd'EnfertC 2000 A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 28 E97
50. TardatBTouatiD 1993 Iron and oxygen regulation of Escherichia coli MnSOD expression: competition between the global regulators Fur and ArcA for binding to DNA. Mol Microbiol 9 53 63
51. TaborSRichardsonCC 1985 A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82 1074 8
52. Van der EntFLöweJ 2006 RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods 67 67 74
53. DubracSTouatiD 2002 Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli. Microbiology 148 147 56
54. LithgowJKHaiderFRobertsISGreenJ 2007 Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol Microbiol 66 685 98
55. MillerJ 1972 Experiments in Molecular Genetics, p.352-355. Cold Spring Harbor Laboratory, NY
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 7
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study Identifies Novel Restless Legs Syndrome Susceptibility Loci on 2p14 and 16q12.1
- Loss of the BMP Antagonist, SMOC-1, Causes Ophthalmo-Acromelic (Waardenburg Anophthalmia) Syndrome in Humans and Mice
- Gene-Based Tests of Association
- Genome-Wide Association Study Identifies as a Susceptibility Gene for Pediatric Asthma in Asian Populations