#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Replication and Explorations of High-Order Epistasis Using a Large Advanced Intercross Line Pedigree


Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects on body weight in an F2 intercross between these high– and low–body weight lines. Here, most pair-wise interactions in the network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis, provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics underlying a complex trait.


Vyšlo v časopise: Replication and Explorations of High-Order Epistasis Using a Large Advanced Intercross Line Pedigree. PLoS Genet 7(7): e32767. doi:10.1371/journal.pgen.1002180
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002180

Souhrn

Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects on body weight in an F2 intercross between these high– and low–body weight lines. Here, most pair-wise interactions in the network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis, provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics underlying a complex trait.


Zdroje

1. AnderssonLGeorgesM 2004 Domestic-animal genomics: deciphering the genetics of complex traits. Nature reviews. Genetics 5 202 12

2. BremRBStoreyJDWhittleJKruglyakL 2005 Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436 701 3

3. EvansDMMarchiniJMorrisAPCardonLR 2006 Two-stage two-locus models in genome-wide association. PLoS Genet 2 e157 doi:10.1371/journal.pgen.0020157

4. PerolaMSammalistoSHiekkalinnaTMartinNGVisscherPM 2007 Combined genome scans for body stature in 6,602 European twins: evidence for common Caucasian loci. PLoS Genet 3 e97 doi:10.1371/journal.pgen.0030097

5. ZhangX-SHillWG 2010 Change and maintenance of variation in quantitative traits in the context of the Price equation. Theoretical population biology 77 14 22

6. BartonNHKeightleyPD 2002 Understanding quantitative genetic variation. Nature reviews. Genetics 3 11 21

7. AlbrechtsenACastellaSAndersenGHansenTPedersenO 2007 A Bayesian multilocus association method: allowing for higher-order interaction in association studies. Genetics 176 1197 208

8. ToussaintMSeelenW von 2007 Complex adaptation and system structure. Bio Systems 90 769 82

9. MussoGCostanzoMHuangfuMSmithAMPawJ 2008 The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome research 18 1092 9

10. MartinSSöllnerCCharoensawanVAdryanBThisseB 2010 Construction of a large extracellular protein interaction network and its resolution by spatiotemporal expression profiling. Molecular & cellular proteomics : MCP 9 2654 65

11. YachieNSaitoRSugiyamaNTomitaMIshihamaY 2011 Integrative Features of the Yeast Phosphoproteome and Protein–Protein Interaction Map. PLoS Comput Biol 7 e1001064 doi:10.1371/journal.pcbi.1001064

12. GitterASiegfriedZKlutsteinMFornesOOlivaB 2009 Backup in gene regulatory networks explains differences between binding and knockout results. Molecular systems biology 5 276

13. CarlborgOJacobssonLAhgrenPSiegelPAnderssonL 2006 Epistasis and the release of genetic variation during long-term selection. Nature genetics 38 418 20

14. Le RouzicACarlborgO 2008 Evolutionary potential of hidden genetic variation. Trends in ecology & evolution (Personal edition) 23 33 7

15. JacobssonLParkH-BWahlbergPFredrikssonRPerez-EncisoM 2005 Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genetical research 86 115 25

16. BesnierFWahlbergPRönnegårdLEkWAnderssonL 2011 Fine mapping and replication of QTL in outbred chicken advanced intercross lines. Genetics, selection, evolution : GSE 43 3

17. CarlborgOKerjeSSchützKJacobssonLJensenP 2003 A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome research 13 413 21

18. Alvarez-CastroJMCarlborgO 2007 A unified model for functional and statistical epistasis and its application in quantitative trait Loci analysis. Genetics 176 1151 67

19. ParkH-BJacobssonLWahlbergPSiegelPBAnderssonL 2006 QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth. Physiological genomics 25 216 23

20. WahlbergPCarlborgOFoglioMTordoirXSyvänenA-C 2009 Genetic analysis of an F(2) intercross between two chicken lines divergently selected for body-weight. BMC genomics 10 248

21. EitanYSollerM 2004 No Title. WasserS Evolutionary Theory and Processes: Modern Horizons. Papers in Honour of Eviatar Nevo Dordrecht, the Netherlands Kluwer Academic 153 176

22. DunningtonESiegelPB 1996 Long-term divergent selection for eight-week body weight in white Plymouth rock chicken. Poultry science 75 1168 1179

23. MárquezGCSiegelPBLewisRM 2010 Genetic diversity and population structure in lines of chickens divergently selected for high and low 8-week body weight. Poultry science 89 2580 8

24. JohanssonAMPetterssonMESiegelPBCarlborgO 2010 Genome-Wide Effects of Long-Term Divergent Selection. PLoS Genet 6 e1001188 doi:10.1371/journal.pgen.1001188

25. HaleyCSKnottSa 1992 A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69 315 24

26. TapadarPGhoshSMajumderPP 2000 Haplotyping in pedigrees via a genetic algorithm. Human heredity 50 43 56

27. Pong-WongRGeorge aWWoolliamsJaHaleyCS 2001 A simple and rapid method for calculating identity-by-descent matrices using multiple markers. Genetics, selection, evolution : GSE 33 453 71

28. RönnegårdLBesnierFCarlborgO 2008 An improved method for quantitative trait loci detection and identification of within-line segregation in F2 intercross designs. Genetics 178 2315 26

29. BesnierFCarlborgO 2009 A genetic algorithm based method for stringent haplotyping of family data. BMC genetics 10 57

30. ValdarWHolmesCCMottRFlintJ 2009 Mapping in structured populations by resample model averaging. Genetics 182 1263 77

31. HaleyCKnottSElsenJ 1994 Mapping Quantitative Trait Loci in Crosses Between Outbred Lines Using Least Squares. Genetics 136 1195 1207 doi:10.1038/ng0506-513

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#