#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Expression of Tumor Suppressor in Spermatogonia Facilitates Meiotic Progression in Male Germ Cells


The mammalian Cdkn2a (Ink4a-Arf) locus encodes two tumor suppressor proteins (p16Ink4a and p19Arf) that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb) and the p53 transcription factor in response to oncogenic stress. Although p19Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell–autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.


Vyšlo v časopise: Expression of Tumor Suppressor in Spermatogonia Facilitates Meiotic Progression in Male Germ Cells. PLoS Genet 7(7): e32767. doi:10.1371/journal.pgen.1002157
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002157

Souhrn

The mammalian Cdkn2a (Ink4a-Arf) locus encodes two tumor suppressor proteins (p16Ink4a and p19Arf) that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb) and the p53 transcription factor in response to oncogenic stress. Although p19Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell–autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.


Zdroje

1. LoweSWSherrCJ 2003 Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13 77 83

2. QuelleDEZindyFAshmunRASherrCJ 1995 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83 993 1000

3. PardalRMolofskyAVHeSMorrisonSJ 2005 Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spr Harb Symp Quant Biol 70 177 185

4. GilJPetersG 2006 Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7 667 677

5. WeberJDJeffersJRRehgJERandleDHLozanoG 2000 p53-independent functions of the p19ARF tumor suppressor. Genes Dev 14 2358 2365

6. SherrCJ 2006 Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6 663 673

7. ZindyFWilliamsRTBaudinoTARehgJESkapekSX 2003 Arf tumor suppressor promoter monitors latent oncogenic signals in vivo. Proc Natl Acad Sci USA 100 15930 15935

8. McKellerRNFowlerJLCunninghamJJWarnerNSmeyneRJ 2002 The Arf tumor suppressor gene promotes hyaloid vascular regression during mouse eye development. Proc Natl Acad Sci USA 99 3848 3853

9. GromleyAChurchmanMLZindyFSherrCJ 2009 Transient expression of the Arf tumor suppressor during male germ cell and eye development in Arf-Cre reporter mice. Proc Natl Acad Sci USA 106 6285 6290

10. RussellLDEttlinRASinha HikimAPCleggED 1990 Histological and histopathological evaluation of the testis Cache River Press. Clearwater, FL

11. de RooijDG 2001 Proliferation and differentiation of spermatogonial stem cells. Reproduction 121 347 354

12. CultyM 2009 Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res (Part C) 87 1 26

13. ColeFKeeneySJasinM 2010 Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes Dev 24 1201 1207

14. BeumerTLRoepers-GajadienHLGademanISKalHBde RooijDG 2000 Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse. Biol Reprod 63 1893 1898

15. BartkeASteeleREMustoNCaldwellBV 1973 Fluctuations in plasma testosterone levels in adult male rats and mice. Endocrinology 92 1223 1228

16. ZindyFden BestenWChenBRehgJELatresE 2001 Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18(Ink4c) and p19(Ink4d). Mol Cell Biol 21 3244 3255

17. BartkovaJLukasCSorensonCSMeytsERSkakkebaekNE 2003 Deregulation of the RB pathway in human testicular germ cell tumors. J Pathol 200 149 156

18. RaneSGDubusPMettusRVGalbreathEJBodenG 1999 Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nature Genet 22 44 52

19. TsutsuiTHesabiBMoonsDSPandolfiPPHanselKS 1999 Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol Cell Biol 19 7011 7019

20. DobsonMJPearlmanREKaraiskakisASpyropoulosBMoensPB 1994 Synaptonemal complex proteins: occurrence, epitope mapping, and chromosome disjunction. J Cell Sci 107 2749 2760

21. RogakouEPPilchDROrrAHIvanovaVSBonnerWM 1998 DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273 5858 5868

22. LimoliCLGiedzinskiEBonnerWMCleaverJE 2002 UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, γ-H2AX formation, and Mre11 relocalization. Proc Natl Acad Sci USA 99 233 238

23. WardIMChenJ 2001 Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276 47759 47762

24. FurutaTTakemuraHLiaoZYAuneGJRedonC 2003 Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent double-strand breaks induced by mammalian DNA topoisomerase I. J Biol Chem 278 20303 20312

25. MartiTMHefnerEFeeneyLNataleVCleaverJE 2006 H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc Natl Acad Sci USA 103 9891 9896

26. MahadevaiahSKTurnerJMBaudetFREPde BoerPBlanco-RodriguezJ 2001 Recombinational DNA double-strand breaks in mice precedes synapsis. Nat Genet 27 271 2716

27. BurgoynePSMahadevaiahSKTurnerJM 2009 The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 10 207 216

28. InagakiASchoenmakersSBaarendsWM 2010 DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis. Epigenetics 5 255 266

29. HaindlMHarasimTEickDMullerS 2008 The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep 9 273 279

30. KuoM-Lden BestenWThomasMCSherrCJ 2008 Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle 7 3378 3387

31. NishidaTYamadaY 2008 SMT3IP1, a nucleolar SUMO-specific protease, deconjugates SUMO-2 from nucleolar and cytoplasmic nucleophosmin. Biochem Biophys Res Commun 374 382 387

32. MorrisJRBoutellCKepplerMDenshamRWeekesD 2009 The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462 886 890

33. GalantyYBelotserkovskayaRCoatesJPoloSMillerKM 2009 Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462 935 939

34. BerginkSJentschS 2009 Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458 461 467

35. Sarkar-AgarwalPVergilisISharplessNEDePinhoRARungerTM 2004 Impaired processing of DNA photoproducts and untraviolet hypermutability with loss of p16INK4a or p19ARF. J Natl Cancer Inst 96 1790 1793

36. Dominguez-BrauerCChenY-JBrauerPMPimkinaJRaychaudhuriP 2009 ARF stimulates XPC to trigger nucleotide excision repair by regulating the repressor complex of E2F4. EMBO Rep 10 1036 1042

37. de RooijDGde BoerP 2003 Specific arrest in spermatogenesis in genetically modified and mutant mice. Cytogenet Genome Res 103 267 276

38. RoyoHPolikiewiczGMahadevaiahSKProsserHMitchellM 2010 Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20 R1022 1024

39. RoigIDowdleJATothAde RooijDGJasinM 2010 Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet 6 e1001062

40. OdoriosoTRodriguezTAEvansEPClarkeARBurgoynePS 1998 The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nat Genet 18 257 261

41. YuanLLiuJGHojaMRLightfootDAHoogC 2001 The checkpoint monitoring chromosomal pairing in male meiotic cells is p53-independent. Cell Death Differ 8 316 317

42. AshleyTWestphalCPlug-de MaggioAde RooijDG 2004 The mammalian mid-pachytene checkpoint: meiotic arrest in spermatocytes with a mutation in Atm alone or in combination with a Trp53 (p53) or Cdkn1a (p21/cip1) mutation. Cytogenet Genome Res 107 256 262

43. LuWJChapoJRoigIAbramsJM 2010 Meiotic recombination provokes functional activation of the p53 regulatory network. Science 328 1278 1281

44. KastanMBBartekJ 2004 Cell-cycle checkpoints and cancer. Nature 432 316 323

45. KinnerAWuWStaudtCIliakisG 2008 Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucl Acids Res 36 5678 5694

46. BakkenistCJKastanMB 2004 Initiating cellular stress responses. Cell 118 9 17

47. KamijoTZindyFRousselMFQuelleDEDowningJR 1997 Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91 649 659

48. SharplessNEBardeesyNLeeK-HCarrascoDCastrillonDH 2001 Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413 86 91

49. SerranoMLeeH-WChinLCordon-CardoCBeachD 1996 Role of the INK4a locus in tumor suppression and cell mortality. Cell 85 27 37

50. BertwistleDZindyFSherrCJRousselMF 2004 Monoclonal antibodies to the mouse p19Arf tumor suppressor protein. Hybridoma and Hybridomics 23 293 300

51. MoensPBFreireRTarsounasMSpyropoulosBJacksonSP 2000 Expression and nuclear localization of BLM, a chromosome stability protein mutated in Bloom's syndrome, suggest a role in recombination during meiotic prophase. J Cell Sci 113 663 672

52. BaudatFManovaKYuenJPJasinMKeeneyS 2000 Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6 989 998

53. ZindyFEischenCMRandleDHKamijoTClevelandJL 1998 Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12 2424 2433

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#