#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

CHD1 Remodels Chromatin and Influences Transient DNA Methylation at the Clock Gene


Circadian-regulated gene expression is predominantly controlled by a transcriptional negative feedback loop, and it is evident that chromatin modifications and chromatin remodeling are integral to this process in eukaryotes. We previously determined that multiple ATP–dependent chromatin-remodeling enzymes function at frequency (frq). In this report, we demonstrate that the Neurospora homologue of chd1 is required for normal remodeling of chromatin at frq and is required for normal frq expression and sustained rhythmicity. Surprisingly, our studies of CHD1 also revealed that DNA sequences within the frq promoter are methylated, and deletion of chd1 results in expansion of this methylated domain. DNA methylation of the frq locus is altered in strains bearing mutations in a variety of circadian clock genes, including frq, frh, wc-1, and the gene encoding the frq antisense transcript (qrf). Furthermore, frq methylation depends on the DNA methyltransferase, DIM-2. Phenotypic characterization of Δdim-2 strains revealed an approximate WT period length and a phase advance of approximately 2 hours, indicating that methylation plays only an ancillary role in clock-regulated gene expression. This suggests that DNA methylation, like the antisense transcript, is necessary to establish proper clock phasing but does not control overt rhythmicity. These data demonstrate that the epigenetic state of clock genes is dependent on normal regulation of clock components.


Vyšlo v časopise: CHD1 Remodels Chromatin and Influences Transient DNA Methylation at the Clock Gene. PLoS Genet 7(7): e32767. doi:10.1371/journal.pgen.1002166
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002166

Souhrn

Circadian-regulated gene expression is predominantly controlled by a transcriptional negative feedback loop, and it is evident that chromatin modifications and chromatin remodeling are integral to this process in eukaryotes. We previously determined that multiple ATP–dependent chromatin-remodeling enzymes function at frequency (frq). In this report, we demonstrate that the Neurospora homologue of chd1 is required for normal remodeling of chromatin at frq and is required for normal frq expression and sustained rhythmicity. Surprisingly, our studies of CHD1 also revealed that DNA sequences within the frq promoter are methylated, and deletion of chd1 results in expansion of this methylated domain. DNA methylation of the frq locus is altered in strains bearing mutations in a variety of circadian clock genes, including frq, frh, wc-1, and the gene encoding the frq antisense transcript (qrf). Furthermore, frq methylation depends on the DNA methyltransferase, DIM-2. Phenotypic characterization of Δdim-2 strains revealed an approximate WT period length and a phase advance of approximately 2 hours, indicating that methylation plays only an ancillary role in clock-regulated gene expression. This suggests that DNA methylation, like the antisense transcript, is necessary to establish proper clock phasing but does not control overt rhythmicity. These data demonstrate that the epigenetic state of clock genes is dependent on normal regulation of clock components.


Zdroje

1. Bell-PedersenDCassoneVMEarnestDJGoldenSSHardinPE 2005 Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6 544 556

2. SchiblerUSassone-CorsiP 2002 A web of circadian pacemakers. Cell 111 919 922

3. ReppertSMWeaverDR 2002 Coordination of circadian timing in mammals. Nature 418 935 941

4. HeintzenCLiuY 2007 The Neurospora crassa circadian clock. Adv Genet 58 25 66

5. BrunnerMSchafmeierT 2006 Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Dev 20 1061 1074

6. ChengPYangYGardnerKHLiuY 2002 PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora. Mol Cell Biol 22 517 524

7. CrosthwaiteSKDunlapJCLorosJJ 1997 Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276 763 769

8. LindenHMacinoG 1997 White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16 98 109

9. BallarioPVittoriosoPMagrelliATaloraCCabibboA 1996 White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15 1650 1657

10. FroehlichACLiuYLorosJJDunlapJC 2002 White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297 815 819

11. FroehlichACLorosJJDunlapJC 2003 Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY. Proc Natl Acad Sci U S A 100 5914 5919

12. ChengPHeQWangLLiuY 2005 Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev 19 234 241

13. LuoCLorosJJDunlapJC 1998 Nuclear localization is required for function of the essential clock protein FRQ. EMBO J 17 1228 1235

14. DiernfellnerACQuerfurthCSalazarCHoferTBrunnerM 2009 Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale. Genes Dev 23 2192 2200

15. SchafmeierTHaaseAKaldiKScholzJFuchsM 2005 Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122 235 246

16. HeQChaJHeQLeeHCYangY 2006 CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes Dev 20 2552 2565

17. DenaultDLLorosJJDunlapJC 2001 WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J 20 109 117

18. BeldenWJLorosJJDunlapJC 2007 Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol Cell 25 587 600

19. GarceauNYLiuYLorosJJDunlapJC 1997 Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89 469 476

20. BakerCLKettenbachANLorosJJGerberSADunlapJC 2009 Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol Cell 34 354 363

21. TangCTLiSLongCChaJHuangG 2009 Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events. Proc Natl Acad Sci U S A 106 10722 10727

22. AronsonBDJohnsonKALorosJJDunlapJC 1994 Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263 1578 1584

23. HeQChengPYangYHeQYuH 2003 FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBOJ 22 4421 4430

24. HeQChengPHeQLiuY 2005 The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev 19 1518 1531

25. EtchegarayJPLeeCWadePAReppertSM 2003 Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421 177 182

26. CurtisAMSeoSBWestgateEJRudicRDSmythEM 2004 Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem 279 7091 7097

27. EtchegarayJPYangXDeBruyneJPPetersAHWeaverDR 2006 The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 281 21209 21215

28. RippergerJASchiblerU 2006 Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38 369 374

29. DoiMHirayamaJSassone-CorsiP 2006 Circadian regulator CLOCK is a histone acetyltransferase. Cell 125 497 508

30. HirayamaJSaharSGrimaldiBTamaruTTakamatsuK 2007 CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450 1086 1090

31. AsherGGatfieldDStratmannMReinkeHDibnerC 2008 SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134 317 328

32. NakahataYKaluzovaMGrimaldiBSaharSHirayamaJ 2008 The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134 329 340

33. KatadaSSassone-CorsiP 2010 The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17 1414 1421

34. JonesMACovingtonMFDitacchioLVollmersCPandaS 2010 Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc Natl Acad Sci U S A 107 21623 21628

35. RippergerJAShearmanLPReppertSMSchiblerU 2000 CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 14 679 689

36. DubruilleRMuradARosbashMEmeryP 2009 A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses. PLoS Genet 5 e1000787 doi:10.1371/journal.pgen.1000787

37. SuzukiMMBirdA 2008 DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9 465 476

38. SargentMLWoodwardDO 1969 Genetic determinants of circadian rhythmicity in Neurospora. J Bacteriol 97 861 866

39. BeldenWJLarrondoLFFroehlichACShiMChenCH 2007 The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes Dev 21 1494 1505

40. ColotHVParkGTurnerGERingelbergCCrewCM 2006 A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103 10352 10357

41. KramerCLorosJJDunlapJCCrosthwaiteSK 2003 Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature 421 948 952

42. GoochVDMehraALarrondoLFFoxJTouroutoutoudisM 2008 Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell 7 28 37

43. SmithKMSancarGDekhangRSullivanCMLiS 2010 Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora White Collar Complex. Eukaryot Cell 9 1549 1556

44. SelkerEUTountasNACrossSHMargolinBSMurphyJG 2003 The methylated component of the Neurospora crassa genome. Nature 422 893 897

45. LewisZAHondaSKhlafallahTKJeffressJKFreitagM 2009 Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res 19 427 437

46. TamaruHSelkerEU 2001 A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414 277 283

47. HeintzenCLorosJJDunlapJC 2001 The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104 453 464

48. LeeJTDavidowLSWarshawskyD 1999 Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21 400 404

49. MetteMFAufsatzWvan der WindenJMatzkeMAMatzkeAJ 2000 Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19 5194 5201

50. KouzminovaESelkerEU 2001 dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J 20 4309 4323

51. ShiMCollettMLorosJJDunlapJC 2010 FRQ-interacting RNA helicase mediates negative and positive feedback in the Neurospora circadian clock. Genetics 184 351 361

52. OoiSKO'DonnellAHBestorTH 2009 Mammalian cytosine methylation at a glance. J Cell Sci 122 2787 2791

53. FengSJacobsenSEReikW Epigenetic reprogramming in plant and animal development. Science 330 622 627

54. ShihMCYehKTTangKPChenJCChangJG 2006 Promoter methylation in circadian genes of endometrial cancers detected by methylation-specific PCR. Mol Carcinog 45 732 740

55. JiYQinYShuHLiX Methylation analyses on promoters of mPer1, mPer2, and mCry1 during perinatal development. Biochem Biophys Res Commun 391 1742 1747

56. LeeHCLiLGuWXueZCrosthwaiteSK 2010 Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 38 803 814

57. SimsRJ3rdMillhouseSChenCFLewisBAErdjument-BromageH 2007 Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28 665 676

58. DunlapJCLorosJJ 2005 Analysis of circadian rhythms in Neurospora: overview of assays and genetic and molecular biological manipulation. Methods Enzymol 393 3 22

59. AusubelFMBrentRKingstonREMooreDDSeidmanJG 1994 Current Protocols in Molecular Biology. ChandaVB

60. ChenCHRingelbergCSGrossRHDunlapJCLorosJJ 2009 Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28 1029 1042

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#