#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genomic Analysis of the Necrotrophic Fungal Pathogens and


Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Vyšlo v časopise: Genomic Analysis of the Necrotrophic Fungal Pathogens and. PLoS Genet 7(8): e32767. doi:10.1371/journal.pgen.1002230
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002230

Souhrn

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Zdroje

1. BoltonMDThommaBPNelsonBD 2006 Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7 1 16

2. WilliamsonBTudzynskiBTudzynskiPvan KanJAL 2007 Botrytis cinerea: The cause of grey mould disease. Mol Plant Pathol 8 561 580

3. OliverRPSolomonPS 2010 New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13 415 419

4. DickmanMBParkYKOltersdorfTLiWClementeT 2001 Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci U S A 98 6957 6962

5. KimKSMinJYDickmanMB 2008 Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe Interact 21 605 612

6. van BaarlenPWolteringEJStaatsMvan KanJAL 2007 Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: An important role for cell death control. Mol Plant Pathol 8 41 54

7. ChoquerMFournierEKunzCLevisCPradierJM 2007 Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277 1 10

8. WilliamsBKabbageMKimHBrittRDickmanMB 2011 Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Path 7 e1002107 doi:10.1371/journal.ppat.1002107

9. TudzynskiPKokkelinkL 2009 Botrytis cinerea: Molecular aspects of a necrotrophic life-style. DeisingH The Mycota. Vol. V. Plant Relationships Berlin, Heidelberg Springer-Verlag 29 50

10. SpanuPDAbbottJCAmselemJBurgisTASoanesDM 2010 Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330 1543 1546

11. HaneJKLoweRGSolomonPSTanKCSchochCL 2007 Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen stagonospora nodorum. Plant Cell 19 3347 3368

12. EllwoodSRLiuZSymeRALaiZHaneJK 2010 A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biol 11 R109

13. WangZJohnstonPRTakamatsuSSpataforaJWHibbettDS 2006 Toward a phylogenetic classification of the leotiomycetes based on rDNA data. Mycologia 98 1065 1075

14. SpataforaJWSungGHJohnsonDHesseCO'RourkeB 2006 A five-gene phylogeny of pezizomycotina. Mycologia 98 1018 1028

15. AguiletaGMartheySChiapelloHLebrunMHRodolpheF 2008 Assessing the performance of single-copy genes for recovering robust phylogenies. Syst Biol 57 613 627

16. SchochCLSungGLópez-GiráldezFTownsendJPMiadlikowskaJ 2009 The ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58 224 239

17. WangHXuZGaoLHaoB 2009 A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol Biol 9 195

18. StaatsMvan BaarlenPvan KanJAL 2005 Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22 333 346

19. Holst-JensenAKohnLMJakobsenKSSchumacherT 1997 Molecular phylogeny and evolution of Monilinia (sclerotiniaceae) based on coding and noncoding rDNA sequences. Am J Bot 84 686 701

20. JaffeDBButlerJGnerreSMauceliELindblad-TohK 2003 Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 13 91 96

21. Fraissinet-TachetLReymond-CottonPFevreM 1996 Molecular karyotype of the phytopathogenic fungus Sclerotinia sclerotiorum. Curr Genet 29 496 501

22. ShiraneNMasukoMHayashiY 1989 Light microscopic observation of nuclei and mitotic chromosomes of Botrytis species. Phytopathology 79 728 730

23. CambareriEBAisnerRCarbonJ 1998 Structure of the chromosome VII centromere region in Neurospora crassa: Degenerate transposons and simple repeats. Mol Cell Biol 18 5465 5477

24. SharpPMLloydAT 1993 Regional base composition variation along yeast chromosome III: Evolution of chormosome primary structure. Nucleic Acids Res 21 179 183

25. RouxelTGrandaubertJHaneJKHoedeCvan de WouwAP 2011 Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat Commun 2 202

26. LerochMMernkeDKoppenhoeferDSchneiderPMosbachA 2011 Living colors in the Gray Mold pathogen Botrytis cinerea: Codon-optimized genes encoding green fluorescent protein and mCherry, which exhibit bright fluorescence. Appl Environ Microbiol 77 2887 2897

27. HaasBJDelcherALWortmanJRSalzbergSL 2004 DAGchainer: A tool for mining segmental genome duplications and synteny. Bioinformatics 20 3643 3646

28. PaolettiMSaupeSJ 2009 Fungal incompatibility: Evolutionary origin in pathogen defense? Bio Essays 31 1201 1210

29. JoSHKooDHKimJFHurCGLeeS 2009 Evolution of ribosomal DNA-derived satellite repeat in tomato genome. BMC Plant Biol 9 42

30. QuesnevilleHBergmanCMAndrieuOAutardDNouaudD 2005 Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1 e22 doi:10.1371/journal.pcbi.0010022

31. FlutreTDupratEFeuilletCQuesnevilleH 2011 Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6 e16526 doi:10.1371/journal.pone.0016526

32. GarfinkelDJNyswanerKMStefaniskoKMChangCMooreSP 2005 Ty1 copy number dynamics in Saccharomyces. Genetics 169 1845 1857

33. LavinJLOguizaJARamirezLPisabarroAG 2008 Comparative genomics of the oxidative phosphorylation system in fungi. Fungal Genet Biol 45 1248 1256

34. CarneiroPDuarteMVideiraA 2007 The external alternative NAD(P)H dehydrogenase NDE3 is localized both in the mitochondria and in the cytoplasm of Neurospora crassa. J Mol Biol 368 1114 1121

35. SchumacherJViaudMSimonATudzynskiB 2008 The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol Microbiol 67 1027 1050

36. CatlettNLYoderOCTurgeonBG 2003 Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2 1151 1161

37. WilsonRATalbotNJ 2009 Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7 185 195

38. JurickWM2ndRollinsJA 2007 Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genet Biol 44 521 530

39. KlimpelAGronoverCSWilliamsonBStewartJATudzynskiB 2002 The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol Plant Pathol 3 439 450

40. SchumacherJKokkelinkLHuesmannCJimenez-TejaDColladoIG 2008 The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. Mol Plant-Microbe Interact 21 1443 1459

41. ReapeTJMcCabePF 2010 Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15 249 256

42. WilliamsBDickmanM 2008 Plant programmed cell death: Can't live with it; can't live without it. Mol Plant Pathol 9 531 544

43. NavarreDAWolpertTJ 1999 Victorin induction of an apoptotic/senescence-like response in oats. Plant Cell 11 237 249

44. SweatTWolpertT 2005 Characterization of victorin-induced cell death in Arabidopsis thaliana. Phytopathology 95 S101

45. Veneault-FourreyCBarooahMEganMWakleyGTalbotNJ 2006 Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312 580 583

46. KershawMJTalbotNJ 2009 Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci U S A 106 15967 15972

47. FinkelshteinAShlezingerNBunisOSharonA 2011 Botrytis cinerea BcNma is involved in apoptotic cell death but not in stress adaptation. Fungal Genet Biol 48 621 630

48. SharonAFinkelshteinAShlezingerNHatamI 2009 Fungal apoptosis: Function, genes and gene function. FEMS Microbiol Rev 33 833 854

49. ShlezingerNMinzAGurYHatamIDagdasYF 2011 Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog 7 e1002185 doi:10.1371/journal.ppat.1002185

50. PoulterRTGoodwinTJButlerMI 2007 The nuclear-encoded inteins of fungi. Fungal Genet Biol 44 153 179

51. BokorAAMvan KanJALPoulterRTM 2010 Sexual mating of Botrytis cinerea illustrates PRP8 intein HEG activity. Fungal Genet Biol 47 392 398

52. MalvarezGCarboneIGrunwaldNJSubbaraoKVSchaferM 2007 New populations of Sclerotinia sclerotiorum from lettuce in california and peas and lentils in Washington. Phytopathology 97 470 483

53. FaretraFAntonacciEPollastroS 1988 Sexual behaviour and mating system of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. J Gen Microbiol 134 2543 2550

54. DebuchyRBerteaux-LecellierVSilarP 2010 Mating systems and sexual morphogenesis in Ascomycetes. BorkovichKAEbboleDJ Cellular and Molecular Biology of Filamentous Fungi Washington ASM Press 501 535

55. IdnurmAWaltonFJFloydAHeitmanJ 2008 Identification of the sex genes in an early diverged fungus. Nature 451 193 196

56. DyerPS 2008 Evolutionary biology: Genomic clues to original sex in fungi. Curr Biol 18 R207 R209

57. FraserJAStajichJETarchaEJColeGTInglisDO 2007 Evolution of the mating type locus: Insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. Eukaryot Cell 6 622 629

58. MandelMABarkerBMKrokenSRounsleySDOrbachMJ 2007 Genomic and population analyses of the mating type loci in Coccidioides species reveal evidence for sexual reproduction and gene acquisition. Eukaryot Cell 6 1189 1199

59. FedorovaNDKhaldiNJoardarVSMaitiRAmedeoP 2008 Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4 e1000046 doi:10.1371/journal.pgen.1000046

60. MartinSHWingfieldBDWingfieldMJSteenkampET 2011 Structure and evolution of the Fusarium mating type locus: New insights from the Gibberella fujikuroi complex. Fungal Genet Biol In Press

61. SinghGAshbyAM 1998 Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1–2 locus encoding a putative metallothionein-like protein. Mol Microbiol 30 799 806

62. PaolettiMRydholmCSchwierEUAndersonMJSzakacsG 2005 Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 15 1242 1248

63. YunSHBerbeeMLYoderOCTurgeonBG 1999 Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc Natl Acad Sci U S A 96 5592 5597

64. InderbitzinPHarknessJTiurgeonBGBerbeeML 2005 Lateral transfer of mating system in Stemphylium. Proc Natl Acad Sci U S A 102 11390 11395

65. van der Vlugt-BergmansCJBBrandwagtBFWagemakersCAMvan't KloosterJWvan KanJAL 1993 Genetic variation and segregation of DNA polymorphisms in Botrytis cinerea. Mycol Res 97 1193 1200

66. DyerPSO'GormanCM 2011 Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev in press

67. GalaganJECalvoSECuomoCMaLJWortmanJR 2005 Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438 1105 1115

68. ErentalADickmanMBYardenO 2008 Sclerotial development in Sclerotinia sclerotiorum: Awakening molecular analysis of a “dormant” structure. Fung Biol Rev 22 6 16

69. RussoGMDahlbergKRVan EttenJL 1982 Identification of a development-specific protein in sclerotia of Sclerotinia sclerotiorum. Exp Mycol 6 259 267

70. LiMRollinsJA 2009 The development-specific protein (Ssp1) from Sclerotinia sclerotiorum is encoded by a novel gene expressed exclusively in sclerotium tissues. Mycologia 101 34 43

71. LiMRollinsJA 2010 The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genet Biol 47 531 538

72. WallDPFraserHBHirshAE 2003 Detecting putative orthologs. Bioinformatics 19 1710 1711

73. BorkovichKAAlexLAYardenOFreitagMTurnerGE 2004 Lessons from the genome sequence of Neurospora crassa: Tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68 1 108

74. GourguesMBrunet-SimonALebrunMLevisC 2004 The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51 619 629

75. XueCParkGChoiWZhengLDeanRA 2002 Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14 2107 2119

76. SextonACCozijnsenAJKeniryAJewellELoveCG 2006 Comparison of transcription of multiple genes at three developmental stages of the plant pathogen Sclerotinia sclerotiorum. FEMS Microbiol Lett 258 150 160

77. SchamberALerochMDiwoJMendgenKHahnM 2010 The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol Plant Pathol 11 105 119

78. RolkeYLiuSQuiddeTWilliamsonBSchoutenA 2004 Functional analysis of H2O2-generating systems in Botrytis cinerea: The major cu-zn-superoxide dismutase (BCSOD1) contributes to virulence on french bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5 17 27

79. HansbergWAguirreJ 1990 Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol 142 201 221

80. SegmüllerNKokkelinkLGiesbertSOdiniusDvan KanJ 2008 NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant-Microbe Interact 21 808 819

81. AguirreJRíos-MombergMHewittDHansbergW 2005 Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13 111 118

82. TakemotoDTanakaAScottB 2007 NADPH oxidases in fungi: Diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44 1065 1076

83. Turrion-GomezJLBenitoEP 2011 Flux of nitric oxide between the necrotrophic pathogen Botrytis cinerea and the host plant. Mol Plant Pathol 606 616

84. TemmeNTudzynskiP 2009 Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol Plant-Microbe Interact 22 987 998

85. De BaryA 1884 Comparative morphology and biology of the fungi mycetozoa and bacteria Oxford Clarendon Press 525

86. MaxwellDPLumsdenRD 1970 Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology 60 1395 1398

87. GodoyGSteadmanJRDickmanMBDamR 1990 Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol 37 179 191

88. RollinsJA 2003 The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant-Microbe Interact 16 785 795

89. BatemanDFBeerSV 1965 Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55 204 211

90. MarcianoPDi LennaPMagroP 1983 Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Ssclerotinia sclerotiorum isolates on sunflower. Physiol Plant Pathol 22 339 345

91. FavaronFSellaLD'OvidioR 2004 Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Mol Plant Microbe Interact 17 1402 1409

92. CessnaSGSearsVEDickmanMBLowPS 2000 Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12 2191 2200

93. GuimaraesRLStotzHU 2004 Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136 3703 3711

94. RollinsJADickmanMB 2001 pH signaling in Sclerotinia sclerotiorum: Identification of a pacC/RIM1 homolog. Appl Environ Microbiol 67 75 81

95. DickmanMB 2007 Subversion or coersion? Pathogenic derminants in fungal phytopathogens. Fungal Biology Rev 21 125 129

96. MaxwellDP 1973 Oxalate formation in Whetzelinia sclerotiorum by oxaloacetate acetylhydrolase. Physiol Mol Plant Pathol 3 279 288

97. HanYJoostenHNiuWZhaoZMarianoPS 2007 Oxaloacetate hydrolase, the C–C bond lyase of oxalate secreting fungi. J Biol Chem 282 9581 9590

98. MagroPMarcianoPDi LennaP 1988 Enzymatic oxalate decarboxylation in isolates of Sclerotinia sclerotiorum. FEMS Microbiol Lett 49 49 52

99. DüsterhöftEPosthumusMAVoragenAGJ 1992 Non-starch polysaccharides from sunflower (Helianthus annuus) meal and palm-kernel (Elaeis guineensis) meal? Investigation of the structure of major polysaccharides. J Sci Food Agric 59 151 160

100. SiezenRJRenckensBBoekhorstJ 2007 Evolution of prokaryotic subtilases: Genome-wide analysis reveals novel subfamilies with different catalytic residues. Proteins: Struct Funct Bioinf 67 681 694

101. FujinagaMCherneyMMOyamaHOdaKJamesMNG 2004 The molecular structure and catalytic mechanism of a novel carboxyl peptidase from Scytalidium lignicolum. Proc Natl Acad Sci U S A 101 3364 3369

102. ten HaveAEspinoJJDekkersEVan SluyterSCBritoN 2010 The Botrytis cinerea aspartic proteinase family. Fungal Genet Biol 47 53 65

103. SchirawskiJMannhauptGMunchKBrefortTSchipperK 2010 Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330 1546 1548

104. RavensdaleMNemriAThrallPHEllisJGDoddsPN 2011 Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. Mol Plant Pathol 12 93 102

105. KhangCHBerruyerRGiraldoMCKankanalaPParkSY 2010 Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22 1388 1403

106. FarisJDZhangZLuHLuSReddyL 2010 A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci U S A 107 13544 13549

107. CiuffettiLMManningVAPandelovaIBettsMFMartinezJP 2010 Host-selective toxins, ptr ToxA and ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. New Phytol 187 911 919

108. NodaJBritoNGonzalezC 2010 The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10 38

109. ColmenaresAJAleuJDuran-PatronRColladoIGHernandez-GalanR 2002 The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28 997 1005

110. TaniHKoshinoHSakunoECutlerHGNakajimaH 2006 Botcinins E and F and botcinolide from Botrytis cinerea and structural revision of botcinolides. J Nat Prod 69 722 725

111. KellerNPTurnerGBennettJW 2005 Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 3 937 947

112. AggerSLopez-GallegoFSchmidt-DannertC 2009 Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol 72 1181 1195

113. FoxEMHowlettBJ 2008 Secondary metabolism: Regulation and role in fungal biology. Curr Opin Microbiol 11 481 487

114. OsbournA 2010 Secondary metabolic gene clusters: Evolutionary toolkits for chemical innovation. Trends Genet 26 449 457

115. CuomoCAGüldenerUXuJTrailFTurgeonBG 2007 The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317 1400 1402

116. DalmaisBSchumacherJMoragaJLe PecheurPTudzynskiB 2011 The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol Plant Pathol 564 579

117. ToyomasuTTsukaharaMKanekoANiidaRMitsuhashiW 2007 Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi. Proc Natl Acad Sci U S A 104 3084 3088

118. PinedoCWangCMPradierJMDalmaisBChoquerM 2008 Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chem Biol 3 791 801

119. SaikiaSNicholsonMJYoungCParkerEJScottB 2008 The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol Res 112 184 199

120. SiewersVKokkelinkLSmedsgaardJTudzynskiP 2006 Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Appl Environ Microbiol 72 4619 4626

121. StefanatoFLAbou-MansourEBuchalaAKretschmerMMosbachA 2009 The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58 499 510

122. KretschmerMLerochMMosbachAWalkerASFillingerS 2009 Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5 e1000696 doi:10.1371/journal.ppat.1000696

123. SaierMHJrTranCVBaraboteRD 2006 TCDB: The transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34 Database issue D181 D186

124. DulermoTRascleCChinniciGGoutEBlignyR 2009 Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: From plant hexoses to mannitol. New Phytol 183 1149 1162

125. KovalchukADriessenAJ 2010 Phylogenetic analysis of fungal ABC transporters. BMC Genomics 11 177

126. ColemanJJMylonakisE 2009 Efflux in fungi: La piece de resistance. PLoS Pathog 5 e1000486 doi:10.1371/journal.ppat.1000486

127. ShelestE 2008 Transcription factors in fungi. FEMS Microbiol Lett 286 145 151

128. ThompsonJDGibsonTJPlewniakFJeanmouginFHigginsDG 1997 The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876 4882

129. SwoffordDL 2003 PAUP*. phylogenetic analysis using parsimony (*and other methods). Version 4

130. PosadaDCrandallKA 1998 MODELTEST: Testing the model of DNA substitution. Bioinformatics 14 817 818

131. PosadaDBuckleyTR 2004 Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53 793 808

132. HuelsenbeckJPRonquistF 2001 MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 754 755

133. TemnykhSDeClerckGLukashovaALipovichLCartinhourS 2001 Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11 1441 1452

134. LanderESGreenPAbrahamsonJBarlowADalyMJ 1987 MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1 174 181

135. FoissacSGouzyJRombautsSMathéCAmselemJ 2008 Genome annotation in plants and fungi : Eugene as a model platform. Curr Bioinform 3 87 97

136. SchiexTMoisanARouzéP 2001 EuGène: An eucaryotic gene finder that combines several sources of evidence. GascuelOSagotM- Computational biology, LNCS 2066 Heidelberg, Germany Springer 111 125

137. DegroeveSSaeysYDe BaetsBRouzePVan de PeerY 2005 SpliceMachine: Predicting splice sites from high-dimensional local context representations. Bioinformatics 21 1332 1338

138. LoweTMEddySR 1997 tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25 955 964

139. KurtzSPhillippyADelcherALSmootMShumwayM 2004 Versatile and open software for comparing large genomes. Genome Biol 5 R12

140. LevisCFortiniDBrygooY 1997 Flipper, a mobile Fot1-like transposable element in Botrytis cinerea. Mol Gen Genet 254 674 680

141. DiolezAMarchesFFortiniDBrygooY 1995 Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Appl Environ Microbiol 61 103 108

142. QuevillonESilventoinenVPillaiSHarteNMulderN 2005 InterProScan: Protein domains identifier. Nucleic Acids Res 33 Web Server issue W116 W120

143. Marchler-BauerAAndersonJBChitsazFDerbyshireMKDeWeese-ScottC 2009 CDD: Specific functional annotation with the conserved domain database. Nucleic Acids Research 37 suppl 1 D205 D210

144. KanehisaMGotoSFurumichiMTanabeMHirakawaM 2010 KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38 Database issue D355 D360

145. TatusovRLFedorovaNDJacksonJDJacobsARKiryutinB 2003 The COG database: An updated version includes eukaryotes. BMC Bioinformatics 4 41

146. KroghALarssonBvon HeijneGSonnhammerELL 2001 Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J Mol Biol 305 567 580

147. LiLStoeckertCJJrRoosDS 2003 OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res 13 2178 2189

148. ViaudMLegeaiFPradierJBrygooYBittonF 2005 Expressed sequence tags from the phytopathogenic fungus Botrytis cinerea. Eur J Plant Pathol 111 139 146

149. SilvaEValdesJHolmesDShmaryahuAValenzuelaPD 2006 Generation and analysis of expressed sequence tags from Botrytis cinerea. Biol Res 39 367 376

150. SimonABiotE 2010 ANAIS: Analysis of NimbleGen arrays interface. Bioinformatics 26 2468 2469

151. RawlingsNDMortonFR 2008 The MEROPS batch BLAST: A tool to detect peptidases and their non-peptidase homologues in a genome. Biochimie 90 243 259

152. NielsenHEngelbrechtJBrunakSvon HeijneG 1997 Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10 1 6

153. CantarelBLCoutinhoPMRancurelCBernardTLombardV 2009 The carbohydrate-active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res 37 Database issue D233 238

154. AltschulSFMaddenTLSchafferAAZhangJZhangZ 1997 Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25 3389 3402

155. EddySR 1998 Profile hidden markov models. Bioinformatics 14 755 763

156. MartinFKohlerAMuratCBalestriniRCoutinhoPM 2010 Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464 1033 1038

157. CollemareJBillardABöhnertHULebrunM 2008 Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: The role of hybrid PKS-NRPS in pathogenicity. Mycol Res 112 207 215

158. BushleyKETurgeonBG 2010 Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10 26

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#