#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Natural Polymorphism in BUL2 Links Cellular Amino Acid Availability with Chronological Aging and Telomere Maintenance in Yeast


Aging and longevity are considered to be highly complex genetic traits. In order to gain insight into aging as a polygenic trait, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard strain RM11 and a laboratory strain S288c, to identify quantitative trait loci that control chronological lifespan. Among the major loci that regulate chronological lifespan in this cross, one genetic linkage was found to be congruent with a previously mapped locus that controls telomere length variation. We found that a single nucleotide polymorphism in BUL2, encoding a component of an ubiquitin ligase complex involved in trafficking of amino acid permeases, controls chronological lifespan and telomere length as well as amino acid uptake. Cellular amino acid availability changes conferred by the BUL2 polymorphism alter telomere length by modulating activity of a transcription factor Gln3. Among the GLN3 transcriptional targets relevant to this phenotype, we identified Wtm1, whose upregulation promotes nuclear retention of ribonucleotide reductase (RNR) components and inhibits the assembly of the RNR enzyme complex during S-phase. Inhibition of RNR is one of the mechanisms by which Gln3 modulates telomere length. Identification of a polymorphism in BUL2 in this outbred yeast population revealed a link among cellular amino acid availability, chronological lifespan, and telomere length control.


Vyšlo v časopise: Natural Polymorphism in BUL2 Links Cellular Amino Acid Availability with Chronological Aging and Telomere Maintenance in Yeast. PLoS Genet 7(8): e32767. doi:10.1371/journal.pgen.1002250
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002250

Souhrn

Aging and longevity are considered to be highly complex genetic traits. In order to gain insight into aging as a polygenic trait, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard strain RM11 and a laboratory strain S288c, to identify quantitative trait loci that control chronological lifespan. Among the major loci that regulate chronological lifespan in this cross, one genetic linkage was found to be congruent with a previously mapped locus that controls telomere length variation. We found that a single nucleotide polymorphism in BUL2, encoding a component of an ubiquitin ligase complex involved in trafficking of amino acid permeases, controls chronological lifespan and telomere length as well as amino acid uptake. Cellular amino acid availability changes conferred by the BUL2 polymorphism alter telomere length by modulating activity of a transcription factor Gln3. Among the GLN3 transcriptional targets relevant to this phenotype, we identified Wtm1, whose upregulation promotes nuclear retention of ribonucleotide reductase (RNR) components and inhibits the assembly of the RNR enzyme complex during S-phase. Inhibition of RNR is one of the mechanisms by which Gln3 modulates telomere length. Identification of a polymorphism in BUL2 in this outbred yeast population revealed a link among cellular amino acid availability, chronological lifespan, and telomere length control.


Zdroje

1. KapahiPChenDRogersANKatewaSDLiPW 2010 With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11 453 465

2. BarbieriMBonafeMFranceschiCPaolissoG 2003 Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 285 E1064 1071

3. SteinkrausKAKaeberleinMKennedyBK 2008 Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24 29 54

4. FabrizioPLongoVD 2007 The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol 371 89 95

5. LundbladVSzostakJW 1989 A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57 633 643

6. BodnarAGOuelletteMFrolkisMHoltSEChiuCP 1998 Extension of life-span by introduction of telomerase into normal human cells. Science 279 349 352

7. CawthonRMSmithKRO'BrienESivatchenkoAKerberRA 2003 Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361 393 395

8. EpelESBlackburnEHLinJDhabharFSAdlerNE 2004 Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A 101 17312 17315

9. BakaysaSLMucciLASlagboomPEBoomsmaDIMcClearnGE 2007 Telomere length predicts survival independent of genetic influences. Aging Cell 6 769 774

10. HjelmborgJvIachineISkyttheAVaupelJWMcGueM 2006 Genetic influence on human lifespan and longevity. Hum Genet 119 312 321

11. BremRBYvertGClintonRKruglyakL 2002 Genetic dissection of transcriptional regulation in budding yeast. Science 296 752 755

12. GatbontonTImbesiMNelsonMAkeyJMRuderferDM 2006 Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2 e35 doi:10.1371/journal.pgen.0020035

13. FabrizioPLongoVD 2003 The chronological life span of Saccharomyces cerevisiae. Aging Cell 2 73 81

14. BurtnerCRMurakamiCJKennedyBKKaeberleinM 2009 A molecular mechanism of chronological aging in yeast. Cell Cycle 8 1256 1270

15. FabrizioPHoonSShamalnasabMGalbaniAWeiM 2010 Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6 e1001024 doi:10.1371/journal.pgen.1001024

16. HelliwellSBLoskoSKaiserCA 2001 Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol 153 649 662

17. SoetensODe CraeneJOAndreB 2001 Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem 276 43949 43957

18. AndreassonCNeveEPLjungdahlPO 2004 Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Yeast 21 193 199

19. DurbinRLouisE Saccharomyces Genome Resequencing Project

20. FossEJRadulovicDShafferSARuderferDMBedalovA 2007 Genetic basis of proteome variation in yeast. Nat Genet 39 1369 1375

21. HardwickJSKuruvillaFGTongJKShamjiAFSchreiberSL 1999 Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96 14866 14870

22. De VirgilioCLoewithR 2006 The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38 1476 1481

23. BindaMPeli-GulliMPBonfilsGPanchaudNUrbanJ 2009 The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 35 563 573

24. PowersRW3rdKaeberleinMCaldwellSDKennedyBKFieldsS 2006 Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20 174 184

25. WeiMFabrizioPHuJGeHChengC 2008 Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4 e13 doi:10.1371/journal.pgen.0040013

26. CoxKHRaiRDistlerMDaughertyJRCoffmanJA 2000 Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. J Biol Chem 275 17611 17618

27. ZamanSLippmanSIZhaoXBroachJR 2008 How Saccharomyces responds to nutrients. Annu Rev Genet 42 27 81

28. BertramPGChoiJHCarvalhoJAiWZengC 2000 Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275 35727 35733

29. ScherensBFellerAVierendeelsFMessenguyFDuboisE 2006 Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. FEMS Yeast Res 6 777 791

30. CrespoJLHelliwellSBWiederkehrCDemouginPFowlerB 2004 NPR1 kinase and RSP5-BUL1/2 ubiquitin ligase control GLN3-dependent transcription in Saccharomyces cerevisiae. J Biol Chem 279 37512 37517

31. YaoRZhangZAnXBucciBPerlsteinDL 2003 Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci U S A 100 6628 6633

32. LeeYDWangJStubbeJElledgeSJ 2008 Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol Cell 32 70 80

33. LeeYDElledgeSJ 2006 Control of ribonucleotide reductase localization through an anchoring mechanism involving Wtm1. Genes Dev 20 334 344

34. ChabesADomkinVThelanderL 1999 Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J Biol Chem 274 36679 36683

35. ZhangHStallockJPNgJCReinhardCNeufeldTP 2000 Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14 2712 2724

36. MeissnerBBollMDanielHBaumeisterR 2004 Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans. J Biol Chem 279 36739 36745

37. GrandisonRCPiperMDPartridgeL 2009 Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462 1061 1064

38. OrentreichNMatiasJRDeFeliceAZimmermanJA 1993 Low methionine ingestion by rats extends life span. J Nutr 123 269 274

39. ZimmermanJAMalloyVKrajcikROrentreichN 2003 Nutritional control of aging. Exp Gerontol 38 47 52

40. MillerRABuehnerGChangYHarperJMSiglerR 2005 Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4 119 125

41. SenguptaSPetersonTRSabatiniDM 2010 Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40 310 322

42. CybulskiNHallMN 2009 TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34 620 627

43. SancakYPetersonTRShaulYDLindquistRAThoreenCC 2008 The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320 1496 1501

44. GaoMKaiserCA 2006 A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 8 657 667

45. CourchesneWEMagasanikB 1983 Ammonia regulation of amino acid permeases in Saccharomyces cerevisiae. Mol Cell Biol 3 672 683

46. MagasanikBKaiserCA 2002 Nitrogen regulation in Saccharomyces cerevisiae. Gene 290 1 18

47. Rubio-TexeiraMKaiserCA 2006 Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. Mol Biol Cell 17 3031 3050

48. YvertGBremRBWhittleJAkeyJMFossE 2003 Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35 57 64

49. DeutschbauerAMDavisRW 2005 Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet 37 1333 1340

50. YangBKumarS 2010 Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ 17 68 77

51. CaoXRLillNLBoaseNShiPPCroucherDR 2008 Nedd4 controls animal growth by regulating IGF-1 signaling. Sci Signal 1 ra5

52. KaeberleinMPowersRW3rdSteffenKKWestmanEAHuD 2005 Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310 1193 1196

53. KapahiPZidBMHarperTKosloverDSapinV 2004 Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14 885 890

54. JiaKChenDRiddleDL 2004 The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131 3897 3906

55. HarrisonDEStrongRSharpZDNelsonJFAstleCM 2009 Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460 392 395

56. BonawitzNDChatenay-LapointeMPanYShadelGS 2007 Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5 265 277

57. MatecicMSmithDLPanXMaqaniNBekiranovS 2010 A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6 e1000921 doi:10.1371/journal.pgen.1000921

58. PedruzziIDuboulozFCameroniEWankeVRoosenJ 2003 TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 12 1607 1613

59. PedruzziIBurckertNEggerPDe VirgilioC 2000 Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19 2569 2579

60. Martinez-PastorMTMarchlerGSchullerCMarchler-BauerARuisH 1996 The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15 2227 2235

61. SchmittAPMcEnteeK 1996 Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93 5777 5782

62. ShenCLancasterCSShiBGuoHThimmaiahP 2007 TOR signaling is a determinant of cell survival in response to DNA damage. Mol Cell Biol 27 7007 7017

63. RothsteinR 1991 Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194 281 301

64. SchmittMEBrownTATrumpowerBL 1990 A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18 3091 3092

65. ThaminySNewcombBKimJGatbontonTFossE 2007 Hst3 is regulated by Mec1-dependent proteolysis and controls the S phase checkpoint and sister chromatid cohesion by deacetylating histone H3 at lysine 56. J Biol Chem 282 37805 37814

66. KushnirovVV 2000 Rapid and reliable protein extraction from yeast. Yeast 16 857 860

67. BigginsSSeverinFFBhallaNSassoonIHymanAA 1999 The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev 13 532 544

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#