and Control Optic Cup Regeneration in a Prototypic Eye
Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation and regeneration. We identified two genes encoding transcription factors, sp6-9 and dlx, that were expressed in the eye specifically in the optic cup and not the photoreceptor neurons. RNAi of these genes prevented formation of visible optic cups during regeneration. Planarian regeneration requires an adult proliferative cell population with stem cell-like properties called the neoblasts. We found that optic cup formation occurred only after migration of progressively differentiating progenitor cells from the neoblast population. The eye regeneration defect caused by dlx and sp6-9 RNAi can be explained by a failure to generate these early optic cup progenitors. Dlx and Sp6-9 genes function as a module during the development of diverse animal appendages, including vertebrate and insect limbs. Our work reveals a novel function for this gene pair in the development of a fundamental eye component, and it utilizes these genes to demonstrate a mechanism for total organ regeneration in which extensive cell movement separates new cell specification from organ morphogenesis.
Vyšlo v časopise:
and Control Optic Cup Regeneration in a Prototypic Eye. PLoS Genet 7(8): e32767. doi:10.1371/journal.pgen.1002226
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002226
Souhrn
Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation and regeneration. We identified two genes encoding transcription factors, sp6-9 and dlx, that were expressed in the eye specifically in the optic cup and not the photoreceptor neurons. RNAi of these genes prevented formation of visible optic cups during regeneration. Planarian regeneration requires an adult proliferative cell population with stem cell-like properties called the neoblasts. We found that optic cup formation occurred only after migration of progressively differentiating progenitor cells from the neoblast population. The eye regeneration defect caused by dlx and sp6-9 RNAi can be explained by a failure to generate these early optic cup progenitors. Dlx and Sp6-9 genes function as a module during the development of diverse animal appendages, including vertebrate and insect limbs. Our work reveals a novel function for this gene pair in the development of a fundamental eye component, and it utilizes these genes to demonstrate a mechanism for total organ regeneration in which extensive cell movement separates new cell specification from organ morphogenesis.
Zdroje
1. StenkampDL 2007 Neurogenesis in the fish retina. Int Rev Cytol 259 173 224
2. OkadaTS 1980 Cellular metaplasia or transdifferentiation as a model for retinal cell differentiation. Curr Top Dev Biol 16 349 380
3. PinedaDGonzalezJCallaertsPIkeoKGehringWJ 2000 Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci U S A 97 4525 4529
4. ManniniLRossiLDeriPGremigniVSalvettiA 2004 Djeyes absent (Djeya) controls prototypic planarian eye regeneration by cooperating with the transcription factor Djsix-1. Dev Biol 269 346 359
5. SatoYKobayashiKMatsumotoMHoshiMNegishiS 2005 Comparative study of eye defective worm ‘menashi’ and regenerating wild-type in planarian, Dugesia ryukyuensis. Pigment Cell Res 18 86 91
6. NilssonDE 2009 The evolution of eyes and visually guided behaviour. Philos Trans R Soc Lond B Biol Sci 364 2833 2847
7. StraussO 2005 The retinal pigment epithelium in visual function. Physiol Rev 85 845 881
8. WagnerDEWangIEReddienPW 2011 Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332 811 816
9. ReddienPWSánchez AlvaradoA 2004 Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20 725 757
10. WenemoserDReddienPW 2010 Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev Biol 344 979 991
11. NewmarkPASánchez AlvaradoA 2000 Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220 142 153
12. EisenhofferGTKangHSánchez AlvaradoA 2008 Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3 327 339
13. HaseSWakamatsuKFujimotoKInabaAKobayashiK 2006 Characterization of the pigment produced by the planarian, Dugesia ryukyuensis. Pigment Cell Res 19 248 249
14. MullerGRuppertSSchmidESchutzG 1988 Functional analysis of alternatively spliced tyrosinase gene transcripts. Embo J 7 2723 2730
15. Sánchez AlvaradoANewmarkPA 1999 Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci U S A 96 5049 5054
16. SchaeperNDPrpicNMWimmerEA 2010 A clustered set of three Sp-family genes is ancestral in the Metazoa: evidence from sequence analysis, protein domain structure, developmental expression patterns and chromosomal location. BMC Evol Biol 10 88
17. PanganibanGRubensteinJL 2002 Developmental functions of the Distal-less/Dlx homeobox genes. Development 129 4371 4386
18. RanadeSSYang-ZhouDKongSWMcDonaldECCookTA 2008 Analysis of the Otd-dependent transcriptome supports the evolutionary conservation of CRX/OTX/OTD functions in flies and vertebrates. Dev Biol 315 521 534
19. NilssonDE 2004 Eye evolution: a question of genetic promiscuity. Curr Opin Neurobiol 14 407 414
20. UmesonoYWatanabeKAgataK 1999 Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. Dev Genes Evol 209 31 39
21. SilverSJRebayI 2005 Signaling circuitries in development: insights from the retinal determination gene network. Development 132 3 13
22. GuoTPetersAHNewmarkPA 2006 A Bruno-like gene is required for stem cell maintenance in planarians. Dev Cell 11 159 169
23. HewitsonTDKelynackKJDarbyIA 2006 Histochemical localization of cell proliferation using in situ hybridization for histone mRNA. Methods Mol Biol 326 219 226
24. ReddienPWOviedoNJJenningsJRJenkinJCSánchez AlvaradoA 2005 SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310 1327 1330
25. HayashiTShibataNOkumuraRKudomeTNishimuraO 2010 Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its “index sorting” function for stem cell research. Dev Growth Differ 52 131 144
26. TakedaHNishimuraKAgataK 2009 Planarians maintain a constant ratio of different cell types during changes in body size by using the stem cell system. Zoolog Sci 26 805 813
27. CaganR 2009 Principles of Drosophila eye differentiation. Curr Top Dev Biol 89 115 135
28. NagarajRBanerjeeU 2007 Combinatorial signaling in the specification of primary pigment cells in the Drosophila eye. Development 134 825 831
29. PetersenCPReddienPW 2009 A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci U S A 106 17061 17066
30. GurleyKARinkJCSánchez AlvaradoA 2008 Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319 323 327
31. PetersenCPReddienPW 2008 Smed-beta-catenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319 327 330
32. IglesiasMGomez-SkarmetaJLSaloEAdellT 2008 Silencing of Smed-beta-catenin-1 generates radial-like hypercephalized planarians. Development 135 1215 1221
33. AdellTSaloEBoutrosMBartschererK 2009 Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration. Development 136 905 910
34. MolinaMDSaloECebriaF 2007 The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Dev Biol 311 79 94
35. ReddienPWBermangeALKiczaAMSánchez AlvaradoA 2007 BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134 4043 4051
36. OriiHWatanabeK 2007 Bone morphogenetic protein is required for dorso-ventral patterning in the planarian Dugesia japonica. Dev Growth Differ 49 345 349
37. CebriaFKobayashiCUmesonoYNakazawaMMinetaK 2002 FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419 620 624
38. KawakamiYEstebanCRMatsuiTRodriguez-LeonJKatoS 2004 Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8 expression and limb outgrowth in vertebrate embryos. Development 131 4763 4774
39. TalamilloADelgadoINakamuraTde-VegaSYoshitomiY 2010 Role of Epiprofin, a zinc-finger transcription factor, in limb development. Dev Biol 337 363 374
40. HertveldtVLouryanSvan ReethTDrezePvan VoorenP 2008 The development of several organs and appendages is impaired in mice lacking Sp6. Dev Dyn 237 883 892
41. SchaeperNDPrpicNMWimmerEA 2009 A conserved function of the zinc finger transcription factor Sp8/9 in allometric appendage growth in the milkweed bug Oncopeltus fasciatus. Dev Genes Evol 219 427 435
42. EstellaCMannRS 2010 Non-redundant selector and growth-promoting functions of two sister genes, buttonhead and Sp1, in Drosophila leg development. PLoS Genet 6 e1001001 doi:10.1371/journal.pgen.1001001
43. ThomasBLTuckerASQuiMFergusonCAHardcastleZ 1997 Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development 124 4811 4818
44. NakamuraTUndaFde-VegaSVilaxaAFukumotoS 2004 The Kruppel-like factor epiprofin is expressed by epithelium of developing teeth, hair follicles, and limb buds and promotes cell proliferation. J Biol Chem 279 626 634
45. LemonsDFritzenwankerJHGerhartJLoweCJMcGinnisW 2010 Co-option of an anteroposterior head axis patterning system for proximodistal patterning of appendages in early bilaterian evolution. Dev Biol 344 358 362
46. DhawanRRSchoenTJBeebeDC 1997 Isolation and expression of homeobox genes from the embryonic chicken eye. Mol Vis 3 7
47. de MeloJDuGFonsecaMGillespieLATurkWJ 2005 Dlx1 and Dlx2 function is necessary for terminal differentiation and survival of late-born retinal ganglion cells in the developing mouse retina. Development 132 311 322
48. ArendtDHausenHPurschkeG 2009 The ‘division of labour’ model of eye evolution. Philos Trans R Soc Lond B Biol Sci 364 2809 2817
49. PinedaDRossiLBatistoniRSalvettiAMarsalM 2002 The genetic network of prototypic planarian eye regeneration is Pax6 independent. Development 129 1423 1434
50. KozmikZ 2008 The role of Pax genes in eye evolution. Brain Res Bull 75 335 339
51. MardonGSolomonNMRubinGM 1994 dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120 3473 3486
52. DavisRJPesahYIHardingMPaylorRMardonG 2006 Mouse Dach2 mutants do not exhibit gross defects in eye development or brain function. Genesis 44 84 92
53. Martinez-MoralesJRDolezVRodrigoIZaccariniRLeconteL 2003 OTX2 activates the molecular network underlying retina pigment epithelium differentiation. J Biol Chem 278 21721 21731
54. SakamiSHisatomiOSakakibaraSLiuJRehTA 2005 Downregulation of Otx2 in the dedifferentiated RPE cells of regenerating newt retina. Brain Res Dev Brain Res 155 49 59
55. VandendriesERJohnsonDReinkeR 1996 orthodenticle is required for photoreceptor cell development in the Drosophila eye. Dev Biol 173 243 255
56. CantarelBLKorfIRobbSMParraGRossE 2008 MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18 188 196
57. ReddienPWBermangeALMurfittKJJenningsJRSánchez AlvaradoA 2005 Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8 635 649
58. PearsonBJEisenhofferGTGurleyKARinkJCMillerDE 2009 Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev Dyn 238 443 450
59. HopmanAHRamaekersFCSpeelEJ 1998 Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for In situ hybridization using CARD amplification. J Histochem Cytochem 46 771 777
60. SakaiFAgataKOriiHWatanabeK 2000 Organization and regeneration ability of spontaneous supernumerary eyes in planarians -eye regeneration field and pathway selection by optic nerves. Zoolog Sci 17 375 381
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- An EMT–Driven Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype
- Chromosome Painting Reveals Asynaptic Full Alignment of Homologs and HIM-8–Dependent Remodeling of Chromosome Territories during Meiosis
- Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers
- Regulation of p53/CEP-1–Dependent Germ Cell Apoptosis by Ras/MAPK Signaling