#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina


The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inner retina. This mutant lacks an optokinetic response (OKR), the ability to visually track rotating illuminated stripes, and develops a super-normal b-wave in the electroretinogram (ERG). We find that celsr3 mRNA is abundant in the amacrine and ganglion cells of the retina, however its loss does not affect synaptic lamination within the inner plexiform layer (IPL) or amacrine cell number. We localize the ERG defect pharmacologically to a late-stage disruption in GABAergic modulation of ON-bipolar cell pathway and find that the DNQX-sensitive fast b1 component of the ERG is specifically affected in this mutant. Consistently, we find an increase in GABA receptors on mutant ON-bipolar terminals, providing a direct link between the observed physiological changes and alterations in GABA signaling components. Finally, using blastula transplantation, we show that the lack of an OKR is due, at least partially, to Celsr3-mediated defects within the brain. These findings support the previously postulated inner retina origin for the b1 component and reveal a new role for Celsr3 in the normal development of ON visual pathway circuitry in the inner retina.


Vyšlo v časopise: Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina. PLoS Genet 7(8): e32767. doi:10.1371/journal.pgen.1002239
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002239

Souhrn

The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inner retina. This mutant lacks an optokinetic response (OKR), the ability to visually track rotating illuminated stripes, and develops a super-normal b-wave in the electroretinogram (ERG). We find that celsr3 mRNA is abundant in the amacrine and ganglion cells of the retina, however its loss does not affect synaptic lamination within the inner plexiform layer (IPL) or amacrine cell number. We localize the ERG defect pharmacologically to a late-stage disruption in GABAergic modulation of ON-bipolar cell pathway and find that the DNQX-sensitive fast b1 component of the ERG is specifically affected in this mutant. Consistently, we find an increase in GABA receptors on mutant ON-bipolar terminals, providing a direct link between the observed physiological changes and alterations in GABA signaling components. Finally, using blastula transplantation, we show that the lack of an OKR is due, at least partially, to Celsr3-mediated defects within the brain. These findings support the previously postulated inner retina origin for the b1 component and reveal a new role for Celsr3 in the normal development of ON visual pathway circuitry in the inner retina.


Zdroje

1. ZipurskySLSanesJR 2010 Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143 343 353

2. LuBUsuiTUemuraTJanLJanYN 1999 Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr Biol 9 1247 1250

3. UsuiTShimaYShimadaYHiranoSBurgessRW 1999 Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98 585 595

4. GaoFBBrenmanJEJanLYJanYN 1999 Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev 13 2549 2561

5. TissirFDe-BackerOGoffinetAMLambert de RouvroitC 2002 Developmental expression profiles of Celsr (Flamingo) genes in the mouse. Mech Dev 112 157 160

6. ShimaYCopelandNGGilbertDJJenkinsNAChisakaO 2002 Differential expression of the seven-pass transmembrane cadherin genes Celsr1–3 and distribution of the Celsr2 protein during mouse development. Dev Dyn 223 321 332

7. ShimaYKawaguchiSYKosakaKNakayamaMHoshinoM 2007 Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neurosci 10 963 969

8. TissirFBarIJossinYDe BackerOGoffinetAM 2005 Protocadherin Celsr3 is crucial in axonal tract development. Nat Neurosci 8 451 457

9. ZhouLTissirFGoffinetAM 2007 The atypical cadherin Celsr3 regulates the development of the axonal blueprint. Novartis Found Symp 288 130 134; discussion 134–140, 276-181

10. ZhouLBarIAchouriYCampbellKDe BackerO 2008 Early forebrain wiring: genetic dissection using conditional Celsr3 mutant mice. Science 320 946 949

11. ZhouLQuYTissirFGoffinetAM 2009 Role of the atypical cadherin Celsr3 during development of the internal capsule. Cereb Cortex 19 Suppl 1 i114 119

12. YingGWuSHouRHuangWCapecchiMR 2009 The protocadherin gene Celsr3 is required for interneuron migration in the mouse forebrain. Mol Cell Biol 29 3045 3061

13. MutoAOrgerMBWehmanAMSmearMCKayJN 2005 Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1 e66 doi:10.1371/journal.pgen.0010066

14. NeuhaussSCBiehlmaierOSeeligerMWDasTKohlerK 1999 Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 19 8603 8615

15. BrockerhoffSEHurleyJBJanssen-BienholdUNeuhaussCFDrieverW 1995 A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA 92 10545 10549

16. ClarkDT 1981 Visual responses in the developing zebrafish (Brachydanio rerio) [Ph D] Eugene Univ. of Oregon

17. BrockerhoffSE 2006 Measuring the optokinetic response of zebrafish larvae. Nat Protoc 1 2448 2451

18. HuangYYNeuhaussSC 2008 The optokinetic response in zebrafish and its applications. Front Biosci 13 1899 1916

19. RinnerORickJMNeuhaussSC 2005 Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response. Invest Ophthalmol Vis Sci 46 137 142

20. BrockerhoffSERiekeFMatthewsHRTaylorMRKennedyB 2003 Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J Neurosci 23 470 480

21. StearnsGEvangelistaMFadoolJMBrockerhoffSE 2007 A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish. J Neurosci 27 13866 13874

22. NishiwakiYKomoriASagaraHSuzukiEManabeT 2008 Mutation of cGMP phosphodiesterase 6alpha'-subunit gene causes progressive degeneration of cone photoreceptors in zebrafish. Mech Dev 125 932 946

23. NelsonRFSinglaN 2009 A spectral model for signal elements isolated from zebrafish photopic electroretinogram. Vis Neurosci 26 349 363

24. WongKYGrayJHaywardCJAdolphARDowlingJE 2004 Glutamatergic mechanisms in the outer retina of larval zebrafish: analysis of electroretinogram b- and d-waves using a novel preparation. Zebrafish 1 121 131

25. FadoolJMFadoolDAMooreJCLinserPJ 1999 Characterization of monoclonal antibodies against zebrafish retina. Invest Ophthal Visual Sci Suppl 40 125

26. WadaHTanakaHNakayamaSIwasakiMOkamotoH 2006 Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain. Development 133 4749 4759

27. YazullaSStudholmeKM 2001 Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry. J Neurocytol 30 551 592

28. WilliamsPRSuzukiSCYoshimatsuTLawrenceOTWaldronSJ 2010 In vivo development of outer retinal synapses in the absence of glial contact. J Neurosci 30 11951 11961

29. PisharathHParsonsMJ 2009 Nitroreductase-mediated cell ablation in transgenic zebrafish embryos. Methods Mol Biol 546 133 143

30. DowlingJE 1987 The Retina: An Approachable Part of the Brain Cambridge Belknap Press of Harvard University Press

31. KofujiPCeelenPZahsKRSurbeckLWLesterHA 2000 Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20 5733 5740

32. BernardosRLRaymondPA 2006 GFAP transgenic zebrafish. Gene Expr Patterns 6 1007 1013

33. SchroeterEHWongROGreggRG 2006 In vivo development of retinal ON-bipolar cell axonal terminals visualized in nyx::MYFP transgenic zebrafish. Vis Neurosci 23 833 843

34. ConnaughtonVPNelsonRBenderAM 2008 Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells. Vis Neurosci 25 139 153

35. FritschyJMBenkeDMertensSOertelWHBachiT 1992 Five subtypes of type A gamma-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit-specific antibodies. Proc Natl Acad Sci U S A 89 6726 6730

36. PanYQianH 2005 Interactions between rho and gamma2 subunits of the GABA receptor. J Neurochem 94 482 490

37. QianHRippsH 1999 Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA rho- and gamma 2-subunits. Proc Biol Sci 266 2419 2425

38. TakeichiM 2007 The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 8 11 20

39. JusufPRHarrisWA 2009 Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural Dev 4 34

40. KaratasM 2009 Internuclear and supranuclear disorders of eye movements: clinical features and causes. Eur J Neurol 16 1265 1277

41. EmranFRihelJAdolphARWongKYKravesS 2007 OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 104 19126 19131

42. SchoonheimPJArrenbergABDel BeneFBaierH 2011 Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish. J Neurosci 30 7111 7120

43. FormstoneCJLittlePF 2001 The flamingo-related mouse Celsr family (Celsr1–3) genes exhibit distinct patterns of expression during embryonic development. Mech Dev 109 91 94

44. ConnaughtonVPBeharTNLiuWLMasseySC 1999 Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Vis Neurosci 16 483 490

45. ChavezAEGrimesWNDiamondJS 2010 Mechanisms underlying lateral GABAergic feedback onto rod bipolar cells in rat retina. J Neurosci 30 2330 2339

46. ChavezAESingerJHDiamondJS 2006 Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature 443 705 708

47. ChenPLClandininTR 2008 The cadherin Flamingo mediates level-dependent interactions that guide photoreceptor target choice in Drosophila. Neuron 58 26 33

48. ChenWSAnticDMatisMLoganCYPovelonesM 2008 Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 133 1093 1105

49. GrueberWBJanLYJanYN 2002 Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129 2867 2878

50. WassleHRiemannHJ 1978 The mosaic of nerve cells in the mammalian retina. Proc R Soc Lond B Biol Sci 200 441 461

51. KimIJZhangYMeisterMSanesJR 2010 Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. J Neurosci 30 1452 1462

52. WesterfieldM 1995 The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio) Eugene University of Oregon Press

53. BrockerhoffSEDowlingJEHurleyJB 1998 Zebrafish Retinal Mutants. Vision Res 38 1335 1339

54. Van EppsHAYimCMHurleyJBBrockerhoffSE 2001 Investigations of photoreceptor synaptic transmission and light adaptation in the zebrafish visual mutant nrc. Invest Ophthalmol Vis Sci 42 868 874

55. SchmittEADowlingJE 1999 Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol 404 515 536

56. ThisseCThisseB 2008 High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3 59 69

57. BarthelLKRaymondPA 2000 In situ hybridization studies of retinal neurons. Methods Enzymol 316 579 590

58. Carmany-RampeyAMoensCB 2006 Modern mosaic analysis in the zebrafish. Methods 39 228 238

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#