#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies


An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species.


Vyšlo v časopise: A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies. PLoS Genet 8(1): e32767. doi:10.1371/journal.pgen.1002451
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002451

Souhrn

An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species.


Zdroje

1. OlsenSO 2006 Early Horse Domestication on the Eurasian Steppe. ZederMBradleyDEmshwillerESmithB Documenting Domestication: New Genetic and Archaeological Paradigms Berkley University of Claifornia Press 245 269

2. HendricksB 1995 International Encyclopedia of Horse Breeds Norman University of Oklahoma Press

3. WadeCMGiulottoESigurdssonSZoliMGnerreS 2009 Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326 865 867

4. PriceSABininda-EmondsORP 2009 A comprehensive phylogeny of extant horses, rhinos and tapirs (Perissodactyla) through data combination. Zool Reihe 85 277 292 10.1002/zoos.200900005

5. MarklundLMollerMJSandbergKAnderssonL 1996 A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in horses. Mamm Genome 7 895 899

6. RiederSTaouritSMariatDLangloisBGuerinG 2001 Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm Genome 12 450 455

7. RosengrenPGGolovkoASundstromECurikILennartssonJ 2008 A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet 40 1004 1009

8. MatukumalliLKLawleyCTSchnabelRDTaylorJFAllanMF 2009 Development and Characterization of a High Density SNP Genotyping Assay for Cattle. PLoS ONE 4 e5350 doi:10.1371/journal.pone.0005350

9. RamosAMCrooijmansRPMAAffaraNAAmaralAJArchibaldAL 2009 Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology. PLoS ONE 4 e6524 doi:10.1371/journal.pone.0006524

10. KarlssonEKBaranowskaIWadeCMSalmon HillbertzNHZodyMC 2007 Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet 39 1321 1328

11. OliphantABarkerDLStuelpnagelJRCheeMS 2002 BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques Suppl 56 1

12. Lindblad-TohKWadeCMMikkelsenTSKarlssonEKJaffeDB 2005 Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438 803 819

13. The Bovine HapMap Consortium 2009 Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. Science 324 528 532

14. TozakiTTakezakiNHasegawaTIshidaNKurosawaM 2003 Microsatellite Variation in Japanese and Asian Horses and Their Phylogenetic Relationship Using a European Horse Outgroup. J Hered 94 374 380

15. BjornstadGGunbyERoedKH 2000 Genetic structure of Norwegian horse breeds Die genetische Struktur von norwegischen Pferderassen. Journal of Animal Breeding and Genetics 117 307 317 10.1046/j.1439-0388.2000.00264.x

16. ReichDECargillMBolkSIrelandJSabetiPC 2001 Linkage disequilibrium in the human genome. Nature 411 199 204

17. PritchardJKPrzeworskiM 2001 Linkage disequilibrium in humans: models and data. Am J Hum Genet 69 1 14

18. CunninghamEPDooleyJJSplanRKBradleyDG 2001 Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Animal Genetics 32 360 364 10.1046/j.1365-2052.2001.00785.x

19. KijasJWTownleyDDalrympleBPHeatonMPMaddoxJF 2009 A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds. PLoS ONE 4 e4668 doi:10.1371/journal.pone.0004668

20. BjornstadGNilsenN+RoedKH 2003 Genetic relationship between Mongolian and Norwegian horses? Animal Genetics 34 55 58 10.1046/j.1365-2052.2003.00922.x

21. OakenfullEACleggJB 1998 Phylogenetic Relationships Within the Genus Equus and the Evolution of α and β Globin Genes. Journal of Molecular Evolution 47 772 783

22. GeorgeMJrRyderOA 1986 Mitochondrial DNA evolution in the genus Equus. Mol Biol Evol 3 535 546

23. NormanJEAshleyMV 2000 Phylogenetics of Perissodactyla and tests of the molecular clock. J Mol Evol 50 11 21

24. MohrErna 1973 The Asiatic Wild Horse. J A Allen & Go ltd

25. BowlingATZimmermannWRyderOPenedoCPetoS 2003 Genetic variation in Przewalski's horses, with special focus on the last wild caught mare, 231 Orlitza III. Cytogenetic and Genome Research 102 226 234

26. GeyerCJThompsonEARyderOA 1989 Gene survival in the Asian wild horse (Equus przewalskii): II. Gene survival in the whole population, in subgroups, and through history. Zoo Biol 8 313 329 10.1002/zoo.1430080402

27. BrooksSAGabreskiNMillerDBrisbinABrownHE 2010 Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome. PLoS Genet 6 e1000909 doi:10.1371/journal.pgen.1000909

28. HillEWMcGivneyBAGuJWhistonRMachughDE 2010 A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics 11 552

29. LykkjenSDolvikNIMcCueMERendahlAKMickelsonJR 2010 Genome-wide association analysis of osteochondrosis of the tibiotarsal joint in Norwegian Standardbred trotters. Animal Genetics 41 111 120 10.1111/j.1365-2052.2010.02117.x

30. BinnsMMBoehlerDALambertDH 2010 Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Animal Genetics 41 154 158 10.1111/j.1365-2052.2010.02126.x

31. CookDGallagherPCBaileyE 2010 Genetics of swayback in American Saddlebred horses. Animal Genetics 41 64 71 10.1111/j.1365-2052.2010.02108.x

32. LudwigAPruvostMReissmannMBeneckeNBrockmannGA 2009 Coat Color Variation at the Beginning of Horse Domestication. Science 324 485

33. PurcellSNealeBTodd-BrownKThomasLFerreiraMA 2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81 559 575

34. BarrettJCFryBMallerJDalyMJ 2005 Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21 263 265

35. GoloboffPAFarrisJSNixonKC 2008 TNT, a free program for phylogenetic analysis. Cladistics 24 774 786 10.1111/j.1096-0031.2008.00217.x

36. BrunbergEAnderssonLCothranGSandbergKMikkoS 2006 A missense mutation in PMEL17 is associated with the Silver coat color in the horse. BMC Genet 7 46

37. SantschiEMPurdyAKValbergSJVrotsosPDKaeseH 1998 Endothelin receptor B polymorphism associated with lethal white foal syndrome in horses. Mamm Genome 9 306 309

38. MetallinosDLBowlingATRineJ 1998 A missense mutation in the endothelin-B receptor gene is associated with Lethal White Foal Syndrome: an equine version of Hirschsprung Disease. Mammalian Genome 9 426 431

39. BrooksSATerryRBBaileyE 2002 A PCR-RFLP for KIT associated with tobiano spotting pattern in horses. Animal Genetics 33 301 303 10.1046/j.1365-2052.2002.00854.x

40. BrooksSBaileyE 2005 Exon skipping in the KIT gene causes a Sabino spotting pattern in horses. Mammalian Genome 16 893 902

41. CookDBrooksSBelloneRBaileyE 2008 Missense Mutation in Exon 2 of SLC36A1 Responsible for Champagne Dilution in Horses. PLoS Genet 4 e1000195 doi:10.1371/journal.pgen.1000195

42. DenisMSeadTGoerardGr 2003 A mutation in the MATP gene causes the cream coat colour in the horse. Genet Sel Evol 35 119 133 10.1051/gse:2002039

43. ScheetPStephensM 2006 A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78 629 644

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#