#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Heterochromatin Formation Promotes Longevity and Represses Ribosomal RNA Synthesis


Organismal aging is influenced by a multitude of intrinsic and extrinsic factors, and heterochromatin loss has been proposed to be one of the causes of aging. However, the role of heterochromatin in animal aging has been controversial. Here we show that heterochromatin formation prolongs lifespan and controls ribosomal RNA synthesis in Drosophila. Animals with decreased heterochromatin levels exhibit a dramatic shortening of lifespan, whereas increasing heterochromatin prolongs lifespan. The changes in lifespan are associated with changes in muscle integrity. Furthermore, we show that heterochromatin levels decrease with normal aging and that heterochromatin formation is essential for silencing rRNA transcription. Loss of epigenetic silencing and loss of stability of the rDNA locus have previously been implicated in aging of yeast. Taken together, these results suggest that epigenetic preservation of genome stability, especially at the rDNA locus, and repression of unnecessary rRNA synthesis, might be an evolutionarily conserved mechanism for prolonging lifespan.


Vyšlo v časopise: Heterochromatin Formation Promotes Longevity and Represses Ribosomal RNA Synthesis. PLoS Genet 8(1): e32767. doi:10.1371/journal.pgen.1002473
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002473

Souhrn

Organismal aging is influenced by a multitude of intrinsic and extrinsic factors, and heterochromatin loss has been proposed to be one of the causes of aging. However, the role of heterochromatin in animal aging has been controversial. Here we show that heterochromatin formation prolongs lifespan and controls ribosomal RNA synthesis in Drosophila. Animals with decreased heterochromatin levels exhibit a dramatic shortening of lifespan, whereas increasing heterochromatin prolongs lifespan. The changes in lifespan are associated with changes in muscle integrity. Furthermore, we show that heterochromatin levels decrease with normal aging and that heterochromatin formation is essential for silencing rRNA transcription. Loss of epigenetic silencing and loss of stability of the rDNA locus have previously been implicated in aging of yeast. Taken together, these results suggest that epigenetic preservation of genome stability, especially at the rDNA locus, and repression of unnecessary rRNA synthesis, might be an evolutionarily conserved mechanism for prolonging lifespan.


Zdroje

1. HarmanD 1956 Aging: a theory based on free radical and radiation chemistry. J Gerontol 11 298 300

2. BeckmanKBAmesBN 1998 The free radical theory of aging matures. Physiol Rev 78 547 581

3. SmithJRPereira-SmithOM 1996 Replicative senescence: implications for in vivo aging and tumor suppression. Science 273 63 67

4. LimPONamHG 2005 The molecular and genetic control of leaf senescence and longevity in Arabidopsis. Curr Top Dev Biol 67 49 83

5. VilleponteauB 1997 The heterochromatin loss model of aging. Exp Gerontol 32 383 394

6. HarleyCB 1991 Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256 271 282

7. LombardDBChuaKFMostoslavskyRFrancoSGostissaM 2005 DNA repair, genome stability, and aging. Cell 120 497 512

8. KenyonC 2005 The plasticity of aging: insights from long-lived mutants. Cell 120 449 460

9. GiannakouMEPartridgeL 2007 Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 32 180 188

10. VijgJCampisiJ 2008 Puzzles, promises and a cure for ageing. Nature 454 1065 1071

11. SedivyJMBanumathyGAdamsPD 2008 Aging by epigenetics–a consequence of chromatin damage? Exp Cell Res 314 1909 1917

12. ColladoMBlascoMASerranoM 2007 Cellular senescence in cancer and aging. Cell 130 223 233

13. JeyapalanJCFerreiraMSedivyJMHerbigU 2007 Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128 36 44

14. HerbigUFerreiraMCondelLCareyDSedivyJM 2006 Cellular senescence in aging primates. Science 311 1257

15. ScaffidiPMisteliT 2006 Lamin A-dependent nuclear defects in human aging. Science 312 1059 1063

16. ShumakerDKDechatTKohlmaierAAdamSABozovskyMR 2006 Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103 8703 8708

17. HaithcockEDayaniYNeufeldEZahandAJFeinsteinN 2005 Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102 16690 16695

18. GrewalSIJiaS 2007 Heterochromatin revisited. Nat Rev Genet 8 35 46

19. YanSJLimSJShiSDuttaPLiWX 2010 Unphosphorylated STAT and heterochromatin protect genome stability. FASEB J

20. PengJCKarpenGH 2007 H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9 25 35

21. SinclairDAGuarenteL 1997 Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91 1033 1042

22. SinclairDAMillsKGuarenteL 1997 Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277 1313 1316

23. EissenbergJCMorrisGDReuterGHartnettT 1992 The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131 345 352

24. GrewalSIElginSC 2002 Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12 178 187

25. EbertASchottaGLeinSKubicekSKraussV 2004 Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18 2973 2983

26. ShiSLarsonKGuoDLimSJDuttaP 2008 Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nat Cell Biol 10 489 496

27. ShiSCalhounHCXiaFLiJLeL 2006 JAK signaling globally counteracts heterochromatic gene silencing. Nat Genet 38 1071 1076

28. ArbouzovaNIZeidlerMP 2006 JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 133 2605 2616

29. HouSXZhengZChenXPerrimonN 2002 The Jak/STAT pathway in model organisms. Emerging roles in cell movement. Dev Cell 3 765 778

30. LiWX 2008 Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 18 545 551

31. FrankelSRoginaB 2005 Drosophila longevity is not affected by heterochromatin-mediated gene silencing. Aging Cell 4 53 56

32. SinclairDARuddellAABrockJKCleggNJLloydVK 1992 A cytogenetic and genetic characterization of a group of closely linked second chromosome mutations that suppress position-effect variegation in Drosophila melanogaster. Genetics 130 333 344

33. XingYShiSLeLLeeCASilver-MorseL 2007 Evidence for Transgenerational Transmission of Epigenetic Tumor Susceptibility in Drosophila. PLoS Genet 3 e151 doi:10.1371/journal.pgen.0030151

34. ChongSVickaryousNAsheAZamudioNYoungsonN 2007 Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat Genet 39 614 622

35. HerndonLASchmeissnerPJDudaronekJMBrownPAListnerKM 2002 Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419 808 814

36. DemontisFPerrimonN 2009 Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 136 983 993

37. LiuGHBarkhoBZRuizSDiepDQuJ 2011 Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472 221 225

38. FeserJTruongDDasCCarsonJJKieftJ 2010 Elevated histone expression promotes life span extension. Molecular cell 39 724 735

39. ManosalvaIGonzalezA 2010 Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology 74 1539 1547

40. SunFLHaynesKSimpsonCLLeeSDCollinsL 2004 cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol Cell Biol 24 8210 8220

41. DorerDRHenikoffS 1994 Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77 993 1002

42. EickbushDGYeJZhangXBurkeWDEickbushTH 2008 Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol Cell Biol 28 6452 6461

43. WangMCBohmannDJasperH 2005 JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121 115 125

44. HansenMTaubertSCrawfordDLibinaNLeeSJ 2007 Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6 95 110

45. PanKZPalterJERogersANOlsenAChenD 2007 Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6 111 119

46. CurranSPRuvkunG 2007 Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3 e56 doi:10.1371/journal.pgen.0030056

47. ChenDPanKZPalterJEKapahiP 2007 Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell 6 525 533

48. TavernarakisN 2008 Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol 18 228 235

49. SteffenKKMacKayVLKerrEOTsuchiyaMHuD 2008 Yeast life span extension by depletion of 60 s ribosomal subunits is mediated by Gcn4. Cell 133 292 302

50. MurayamaAOhmoriKFujimuraAMinamiHYasuzawa-TanakaK 2008 Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133 627 639

51. SchottaGEbertAKraussVFischerAHoffmannJ 2002 Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. Embo J 21 1121 1131

52. LiYDanzerJRAlvarezPBelmontASWallrathLL 2003 Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130 1817 1824

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#