#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Functional Specialization of the Plant miR396 Regulatory Network through Distinct MicroRNA–Target Interactions


MicroRNAs (miRNAs) are ∼21 nt small RNAs that regulate gene expression in animals and plants. They can be grouped into families comprising different genes encoding similar or identical mature miRNAs. Several miRNA families are deeply conserved in plant lineages and regulate key aspects of plant development, hormone signaling, and stress response. The ancient miRNA miR396 regulates conserved targets belonging to the GROWTH-REGULATING FACTOR (GRF) family of transcription factors, which are known to control cell proliferation in Arabidopsis leaves. In this work, we characterized the regulation of an additional target for miR396, the transcription factor bHLH74, that is necessary for Arabidopsis normal development. bHLH74 homologs with a miR396 target site could only be detected in the sister families Brassicaceae and Cleomaceae. Still, bHLH74 repression by miR396 is required for margin and vein pattern formation of Arabidopsis leaves. MiR396 contributes to the spatio-temporal regulation of GRF and bHLH74 expression during leaf development. Furthermore, a survey of miR396 sequences in different species showed variations in the 5′ portion of the miRNA, a region known to be important for miRNA activity. Analysis of different miR396 variants in Arabidopsis thaliana revealed that they have an enhanced activity toward GRF transcription factors. The interaction between the GRF target site and miR396 has a bulge between positions 7 and 8 of the miRNA. Our data indicate that such bulge modulates the strength of the miR396-mediated repression and that this modulation is essential to shape the precise spatio-temporal pattern of GRF2 expression. The results show that ancient miRNAs can regulate conserved targets with varied efficiency in different species, and we further propose that they could acquire new targets whose control might also be biologically relevant.


Vyšlo v časopise: Functional Specialization of the Plant miR396 Regulatory Network through Distinct MicroRNA–Target Interactions. PLoS Genet 8(1): e32767. doi:10.1371/journal.pgen.1002419
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002419

Souhrn

MicroRNAs (miRNAs) are ∼21 nt small RNAs that regulate gene expression in animals and plants. They can be grouped into families comprising different genes encoding similar or identical mature miRNAs. Several miRNA families are deeply conserved in plant lineages and regulate key aspects of plant development, hormone signaling, and stress response. The ancient miRNA miR396 regulates conserved targets belonging to the GROWTH-REGULATING FACTOR (GRF) family of transcription factors, which are known to control cell proliferation in Arabidopsis leaves. In this work, we characterized the regulation of an additional target for miR396, the transcription factor bHLH74, that is necessary for Arabidopsis normal development. bHLH74 homologs with a miR396 target site could only be detected in the sister families Brassicaceae and Cleomaceae. Still, bHLH74 repression by miR396 is required for margin and vein pattern formation of Arabidopsis leaves. MiR396 contributes to the spatio-temporal regulation of GRF and bHLH74 expression during leaf development. Furthermore, a survey of miR396 sequences in different species showed variations in the 5′ portion of the miRNA, a region known to be important for miRNA activity. Analysis of different miR396 variants in Arabidopsis thaliana revealed that they have an enhanced activity toward GRF transcription factors. The interaction between the GRF target site and miR396 has a bulge between positions 7 and 8 of the miRNA. Our data indicate that such bulge modulates the strength of the miR396-mediated repression and that this modulation is essential to shape the precise spatio-temporal pattern of GRF2 expression. The results show that ancient miRNAs can regulate conserved targets with varied efficiency in different species, and we further propose that they could acquire new targets whose control might also be biologically relevant.


Zdroje

1. VoinnetO 2009 Origin, biogenesis, and activity of plant microRNAs. Cell 136 669 687

2. Jones-RhoadesMWBartelDPBartelB 2006 MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57 19 53

3. ChenX 2008 MicroRNA metabolism in plants. Curr Top Microbiol Immunol 320 117 136

4. Griffiths-JonesSSainiHKvan DongenSEnrightAJ 2008 miRBase: tools for microRNA genomics. Nucleic Acids Res 36 D154 158

5. MeyersBCAxtellMJBartelBBartelDPBaulcombeD 2008 Criteria for Annotation of Plant MicroRNAs. Plant Cell

6. FahlgrenNJogdeoSKasschauKDSullivanCMChapmanEJ 2010 MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22 1074 1089

7. FahlgrenNHowellMDKasschauKDChapmanEJSullivanCM 2007 High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2 e219 doi:10.1371/journal.pone.0000219

8. MaZCoruhCAxtellMJ 2010 Arabidopsis lyrata small RNAs: transient MIRNA and small interfering RNA loci within the Arabidopsis genus. Plant Cell 22 1090 1103

9. AxtellMJBowmanJL 2008 Evolution of plant microRNAs and their targets. Trends Plant Sci 13 343 349

10. RajagopalanRVaucheretHTrejoJBartelDP 2006 A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20 3407 3425

11. AxtellMJ 2008 Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim Biophys Acta 1779 725 734

12. TodescoMRubio-SomozaIPaz-AresJWeigelD 2010 A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6 e1001031 doi:10.1371/journal.pgen.1001031

13. KutterCSchobHStadlerMMeinsFJrSi-AmmourA 2007 MicroRNA-mediated regulation of stomatal development in Arabidopsis. Plant Cell 19 2417 2429

14. AxtellMJBartelDP 2005 Antiquity of microRNAs and their targets in land plants. Plant Cell 17 1658 1673

15. MalloryACReinhartBJJones-RhoadesMWTangGZamorePD 2004 MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. Embo J 23 3356 3364

16. SchwabRPalatnikJFRiesterMSchommerCSchmidM 2005 Specific effects of microRNAs on the plant transcriptome. Dev Cell 8 517 527

17. PalatnikJFWollmannHSchommerCSchwabRBoisbouvierJ 2007 Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13 115 125

18. PalatnikJFAllenEWuXSchommerCSchwabR 2003 Control of leaf morphogenesis by microRNAs. Nature 425 257 263

19. AchardPHerrABaulcombeDCHarberdNP 2004 Modulation of floral development by a gibberellin-regulated microRNA. Development 131 3357 3365

20. OriNCohenAREtzioniABrandAYanaiO 2007 Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39 787 791

21. LiuDSongYChenZYuD 2009 Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136 223 236

22. RodriguezREMecchiaMADebernardiJMSchommerCWeigelD 2010 Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137 103 112

23. Jones-RhoadesMWBartelDP 2004 Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14 787 799

24. WangLGuXXuDWangWWangH 2011 miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot 62 761 773

25. HoriguchiGFerjaniAFujikuraUTsukayaH 2006 Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119 37 42

26. HoriguchiGKimGTTsukayaH 2005 The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43 68 78

27. KimJHKendeH 2004 A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci U S A 101 13374 13379

28. KimJHChoiDKendeH 2003 The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36 94 104

29. SunkarRGirkeTJainPKZhuJK 2005 Cloning and characterization of microRNAs from rice. Plant Cell 17 1397 1411

30. SunkarRJagadeeswaranG 2008 In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8 37

31. RhoadesMWReinhartBJLimLPBurgeCBBartelB 2002 Prediction of plant microRNA targets. Cell 110 513 520

32. AllenEXieZGustafsonAMCarringtonJC 2005 microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121 207 221

33. AxtellMJSnyderJABartelDP 2007 Common functions for diverse small RNAs of land plants. Plant Cell 19 1750 1769

34. LlaveCXieZKasschauKDCarringtonJC 2002 Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297 2053 2056

35. LobbesDRallapalliGSchmidtDDMartinCClarkeJ 2006 SERRATE: a new player on the plant microRNA scene. EMBO Rep 7 1052 1058

36. Addo-QuayeCEshooTWBartelDPAxtellMJ 2008 Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18 758 762

37. GermanMAPillayMJeongDHHetawalALuoS 2008 Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26 941 946

38. Toledo-OrtizGHuqEQuailPH 2003 The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15 1749 1770

39. HeimMAJakobyMWerberMMartinCWeisshaarB 2003 The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20 735 747

40. BaileyPCMartinCToledo-OrtizGQuailPHHuqE 2003 Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15 2497 2502

41. SchranzMEMitchell-OldsT 2006 Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18 1152 1165

42. KochMHauboldBMitchell-OldsT 2001 Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88 534 544

43. Rolland-LaganAGAminMPakulskaM 2009 Quantifying leaf venation patterns: two-dimensional maps. Plant J 57 195 205

44. ZhangLChiaJMKumariSSteinJCLiuZ 2009 A genome-wide characterization of microRNA genes in maize. PLoS Genet 5 e1000716 doi:10.1371/journal.pgen.1000716

45. LuSSunYHAmersonHChiangVL 2007 MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51 1077 1098

46. OhTJWartellRMCairneyJPullmanGS 2008 Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179 67 80

47. KlevebringDStreetNRFahlgrenNKasschauKDCarringtonJC 2009 Genome-wide profiling of populus small RNAs. BMC Genomics 10 620

48. YaoYGuoGNiZSunkarRDuJ 2007 Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8 R96

49. BarakatAWallPKDiloretoSDepamphilisCWCarlsonJE 2007 Conservation and divergence of microRNAs in Populus. BMC Genomics 8 481

50. MorinRDAksayGDolgosheinaEEbhardtHAMagriniV 2008 Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18 571 584

51. SchwabROssowskiSRiesterMWarthmannNWeigelD 2006 Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18 1121 1133

52. Rubio-SomozaICuperusJTWeigelDCarringtonJC 2009 Regulation and functional specialization of small RNA-target nodes during plant development. Curr Opin Plant Biol

53. ChenCRidzonDABroomerAJZhouZLeeDH 2005 Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33 e179

54. CzechowskiTStittMAltmannTUdvardiMKScheibleWR 2005 Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139 5 17

55. DonnellyPMBonettaDTsukayaHDenglerREDenglerNG 1999 Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215 407 419

56. KasschauKDXieZAllenELlaveCChapmanEJ 2003 P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4 205 217

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#