#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cytoplasmic Polyadenylation Element Binding Protein Deficiency Stimulates PTEN and Stat3 mRNA Translation and Induces Hepatic Insulin Resistance


The cytoplasmic polyadenylation element binding protein CPEB1 (CPEB) regulates germ cell development, synaptic plasticity, and cellular senescence. A microarray analysis of mRNAs regulated by CPEB unexpectedly showed that several encoded proteins are involved in insulin signaling. An investigation of Cpeb1 knockout mice revealed that the expression of two particular negative regulators of insulin action, PTEN and Stat3, were aberrantly increased. Insulin signaling to Akt was attenuated in livers of CPEB–deficient mice, suggesting that they might be defective in regulating glucose homeostasis. Indeed, when the Cpeb1 knockout mice were fed a high-fat diet, their livers became insulin-resistant. Analysis of HepG2 cells, a human liver cell line, depleted of CPEB demonstrated that this protein directly regulates the translation of PTEN and Stat3 mRNAs. Our results show that CPEB regulated translation is a key process involved in insulin signaling.


Vyšlo v časopise: Cytoplasmic Polyadenylation Element Binding Protein Deficiency Stimulates PTEN and Stat3 mRNA Translation and Induces Hepatic Insulin Resistance. PLoS Genet 8(1): e32767. doi:10.1371/journal.pgen.1002457
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002457

Souhrn

The cytoplasmic polyadenylation element binding protein CPEB1 (CPEB) regulates germ cell development, synaptic plasticity, and cellular senescence. A microarray analysis of mRNAs regulated by CPEB unexpectedly showed that several encoded proteins are involved in insulin signaling. An investigation of Cpeb1 knockout mice revealed that the expression of two particular negative regulators of insulin action, PTEN and Stat3, were aberrantly increased. Insulin signaling to Akt was attenuated in livers of CPEB–deficient mice, suggesting that they might be defective in regulating glucose homeostasis. Indeed, when the Cpeb1 knockout mice were fed a high-fat diet, their livers became insulin-resistant. Analysis of HepG2 cells, a human liver cell line, depleted of CPEB demonstrated that this protein directly regulates the translation of PTEN and Stat3 mRNAs. Our results show that CPEB regulated translation is a key process involved in insulin signaling.


Zdroje

1. WhiteMFKahnCR 1994 The insulin signaling system. J Biol Chem 269 1 4

2. KahnSEHullRLUtzschneiderKM 2006 Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444 840 846

3. UekiKKondoTKahnCR 2004 Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24 5434 5446

4. KimJHKimJELiuHYCaoWChenJ 2008 Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway. J Biol Chem 283 708 715

5. RichterJD 2007 CPEB: a life in translation. Trends Biochem Sci 32 279 285

6. MendezRBarnardDRichterJD 2002 Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. Embo J 21 1833 1844

7. BarnardDCRyanKManleyJLRichterJD 2004 Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119 641 651

8. TayJRichterJD 2001 Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 1 201 213

9. AlarconJMHodgmanRTheisMHuangYSKandelER 2004 Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Mem 11 318 327

10. WuLWellsDTayJMendisDAbbottMA 1998 CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 21 1129 1139

11. GroismanIHuangYSMendezRCaoQTheurkaufW 2000 CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103 435 447

12. GroismanIIvshinaMMarinVKennedyNJDavisRJ 2006 Control of cellular senescence by CPEB. Genes Dev 20 2701 2712

13. BurnsDMRichterJD 2008 CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev 22 3449 3460

14. FeveBBastardJP 2009 The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 5 305 311

15. AndersonP Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat Rev Immunol 10 24 35

16. KeeneJD 2007 RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8 533 543

17. MorrisARMukherjeeNKeeneJD Systematic analysis of posttranscriptional gene expression. Wiley Interdiscip Rev Syst Biol Med 2 162 180

18. ManiatisTReedR 2002 An extensive network of coupling among gene expression machines. Nature 416 499 506

19. LicatalosiDDDarnellRB RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 11 75 87

20. LicatalosiDDMeleAFakJJUleJKayikciM 2008 HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456 464 469

21. BoettgerTBeetzNKostinSSchneiderJKrugerM 2009 Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 119 2634 2647

22. LiuNOlsonEN MicroRNA regulatory networks in cardiovascular development. Dev Cell 18 510 525

23. WangSAuroraABJohnsonBAQiXMcAnallyJ 2008 The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15 261 271

24. HerranzHCohenSM MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24 1339 1344

25. ParisJSwensonKPiwnica-WormsHRichterJD 1991 Maturation-specific polyadenylation: in vitro activation by p34cdc2 and phosphorylation of a 58-kD CPE-binding protein. Genes Dev 5 1697 1708

26. HakeLERichterJD 1994 CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79 617 627

27. MoraASakamotoKMcManusEJAlessiDR 2005 Role of the PDK1-PKB-GSK3 pathway in regulating glycogen synthase and glucose uptake in the heart. FEBS Lett 579 3632 3638

28. KimHJHigashimoriTParkSYChoiHDongJ 2004 Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53 1060 1067

29. Huang daWShermanBTLempickiRA 2009 Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37 1 13

30. NottrottSSimardMJRichterJD 2006 Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13 1108 1114

31. BurnsDD'AmbrogioANottrottSRichterJD 2011 CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473 105 108

32. Huang daWShermanBTLempickiRA 2009 Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc 4 44 57

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#