#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dysregulated Estrogen Receptor Signaling in the Hypothalamic-Pituitary-Ovarian Axis Leads to Ovarian Epithelial Tumorigenesis in Mice


Ovarian cancer is currently the most lethal gynecological cancer in the United States. Multiple epidemiological studies indicate that women who take hormone replacement therapy, estrogen or estrogen with progesterone, peri- or postmenopause will have an increased chance of developing ovarian cancer. Unfortunately, the five-year survival rate after diagnosis is very low indicating that better tools are needed to diagnose and treat ovarian cancer. The models that would allow investigation of this disease are severely limited. In this article we introduce a mouse model that develops epithelial ovarian tumors, and by employing inhibitors of estrogen synthesis, we show that ovarian tumorigenesis in this model is dependent on estrogen production within the ovarian tumor. These studies suggest that estrogen may play a role in promoting ovarian tumor growth.


Vyšlo v časopise: Dysregulated Estrogen Receptor Signaling in the Hypothalamic-Pituitary-Ovarian Axis Leads to Ovarian Epithelial Tumorigenesis in Mice. PLoS Genet 10(3): e32767. doi:10.1371/journal.pgen.1004230
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004230

Souhrn

Ovarian cancer is currently the most lethal gynecological cancer in the United States. Multiple epidemiological studies indicate that women who take hormone replacement therapy, estrogen or estrogen with progesterone, peri- or postmenopause will have an increased chance of developing ovarian cancer. Unfortunately, the five-year survival rate after diagnosis is very low indicating that better tools are needed to diagnose and treat ovarian cancer. The models that would allow investigation of this disease are severely limited. In this article we introduce a mouse model that develops epithelial ovarian tumors, and by employing inhibitors of estrogen synthesis, we show that ovarian tumorigenesis in this model is dependent on estrogen production within the ovarian tumor. These studies suggest that estrogen may play a role in promoting ovarian tumor growth.


Zdroje

1. SiegelR, NaishadhamD, JemalA (2012) Cancer statistics. CA Cancer J Clin 62 (1) 10–29.

2. AuerspergN (2011) The origin of ovarian carcinomas: a unifying hypothesis. Int J Gynecol Pathol 30 (1) 12–21.

3. BastRC, HennessyB, MillsGB (2009) The biology of ovarian cancer: new opportunities for translation. Nature Reviews Cancer 9: 415–428.

4. StadelBV (1975) Letter: the etiology and prevention of ovarian cancer. Am J Obstet Gynecol 123: 772–774.

5. Mertens-WalkerI, BaxterRC, MarshDJ (2012) Gonadotropin signaling in epithelial ovarian cancer. Cancer Letters 324: 152–159.

6. StewartSL, QuerecTD, OchmanAR, GruverBN, BaoR, et al. (2004) Characterization of a carcinogenesis rat model of ovarian preneoplasia and neoplasia. Cancer Res 64: 8177–8183.

7. RimanT, PerssonS, NilssonS (1998) Hormonal aspects of epithelial ovarian cancer: review of epidemiological evidence. Clin Endocrinol 49: 695–707.

8. ChakravartiS, CollinsWP, ForecastJD, NewtonJR, OramDH, et al. (1976) Hormonal profiles after the menopause. Br Med J 2: 784–787.

9. LaceyJVJr, MinkPJ, LubinJH, ShermanME, TroisiR, et al. (2002) Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA 288: 334–341.

10. GludE, KjaerSK, ThomsenBL, HøgdallC, ChristensenL, et al. (2004) Hormone therapy and the impact of estrogen intake on the risk of ovarian cancer. Arch Intern Med 164: 2253–2259.

11. BeralV (2007) Million Women Study Collaborators (2007) BullD, GreenJ, ReevesG (2007) Ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet 369: 1703–1710.

12. RossingMA, Cushing-HaugenKL, WicklundKG, DohertyJA, WeissNS (2007) Menopausal hormone therapy and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 16: 2548–2556.

13. MørchLS, LøkkegaardE, AndreasenAH, Krüger-KjaerS, LidegaardO (2009) Hormone therapy and ovarian cancer. JAMA 302: 298–305.

14. SasanoH, HaradaN (1998) Intratumoral aromatase in human breast, endometrial, and ovarian malignancies. Endocr Rev 19: 593–607.

15. BaiW, Oliveros-SaundersB, WangQ, Acevedo-DuncanME, NicosiaSV (2000) Estrogen stimulation of ovarian surface epithelial cell proliferation. In Vitro Cell Dev Biol Anim 36: 657–66.

16. LavioletteLA, GarsonK, MacdonaldEA, SentermanMK, CourvilleK, et al. (2010) 17beta-estradiol accelerates tumor onset and decreases survival in a transgenic mouse model of ovarian cancer. Endocrinology 151: 929–38.

17. DupontS, KrustA, GansmullerA, DierichA, ChambonP, et al. (2000) Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 127: 4277–4291.

18. SoyalSM, MukherjeeA, LeeKY, LiJ, LiH, et al. (2005) Cre-mediated recombination in cell lineages that express the progesterone receptor. Genesis 41: 58–66.

19. HewittSC, KorachKS (2000) Progesterone action and responses in the alphaERKO mouse. Steroids 65: 551–7.

20. CouseJF, YatesMM, WalkerVR, KorachKS (2003) Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) Null mice reveals hypergonadism and endocrine sex reversal in females lacking ERalpha but not ERbeta. Mol Endocrinol 17: 1039–53.

21. AltomareDA, WangHQ, SkeleKL, De RienzoA, Klein-SzantoAJ, et al. (2004) AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene 23: 5853–5857.

22. VivancoI, SawyersCL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

23. KimuraA, OhmichiM, KawagoeJ, KyoS, MabuchiS, et al. (2004) Induction of hTERT expression and phosphorylation by estrogen via Akt cascade in human ovarian cancer cell lines. Oncogene 23: 4505–15.

24. ReyR, SabourinJC, VenaraM, LongWQ, JaubertF, et al. (2000) Anti-Mullerian hormone is a specific marker of sertoli- and granulosa-cell origin in gonadal tumors. Hum Pathol 31: 1202–1208.

25. AuerspergN, WongAS, ChoiKC, KangSK, LeungPC (2001) Ovarian surface epithelium: biology, endocrinology and pathology. Endocr Rev 22: 255–288.

26. AuerspergN, WooMM, GilksCB (2008) The origin of ovarian carcinomas: a developmental view. Gynecol Oncol 110: 452–454.

27. KingSJ, BurdetteJE (2011) Evaluating the progenitor cells of ovarian cancer: analysis of current animal models. BMB reports 44: 435–445.

28. KurmanRJ, ShihLM (2010) The origin and pathogenesis of epithelial ovarian cancer-a proposed unifying theory. Am J Surg Pathol 34: 433–443.

29. NonakaD, ChiribogaL, SoslowRA (2008) Expression of pax8 as a useful marker in distinguishing ovarian carcinomas from mammary carcinomas. Am J Surg Pathol 32: 1566–1571.

30. TongGX, DevarajK, Hamele-BenaD, YuWM, TurkA, et al. (2011) Pax8: a marker for carcinoma of Mullerian origin in serous effusions. Diagn Cytopathol 39: 567–574.

31. WilczynskiSP, ChenYY, ChenW, HowellSB, ShivelyJE, et al. (2005) Expression and mutational analysis of tyrosine kinase receptors c-kit, PDGFRalpha, and PDGFRbeta in ovarian cancers. Hum Pathol 36: 242–9.

32. GiavazziR, NicolettiMI, ChiriviRG, HemingwayI, BernasconiS, et al. (1994) Soluble intercellular adhesion molecule 1 (ICAM-1) is released into the serum and ascites of human ovarian carcinoma patients and in nude mice bearing tumor xenogtafts. Eur J Cancer 30A: 1865–70.

33. BanksRE, GearingAJ, HemingwayIK, NorfolkDR, PerrenTJ, et al. (1993) Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br J Cancer 68: 122–4.

34. YurkovetskyZ, SkatesS, LomakinA, NolenB, PulsipherT, et al. (2010) Development of a multimarker assay for early detection of ovarian cancer. J Clin Oncol 28: 2159–66.

35. GunawardanaCG, KukC, SmithCR, BatruchI, SoosaipillaiA, et al. (2009) Comprehensive analysis of conditioned media from ovarian cancer cell lines identifies novel candidate markers of epithelial ovarian cancer. J Proteome Res 8: 4705–13.

36. TanDS, LambrosMB, RayterS, NatrajanR, VatchevaR, et al. (2009) PPM1D (Wip1) is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res 15: 2269–2280.

37. MacLuskyNJ, VoitR, LazoJS, SchwartzPE, MerinoMJ, et al. (1987) Aromatase activity in human ovarian cancer. Steroids 50: 423–433.

38. ThompsonMA, AdelsonMD, KaufmanLM, MarshallLD, CobleDA (1988) Aromatization of testosterone by epithelial tumor cells cultured from patients with ovarian carcinoma. Cancer Res 48: 6491–6497.

39. ZimniskiSJ, GarolaRE, FendlK, PetersonCM (1989) Endocrine characterization of a human ovarian carcinoma (BG-1) established in nude mice. Steroids 54: 593–606.

40. CunataS, HoffmannbP, PujolP (2004) Estrogens and epithelial ovarian cancer. Gynecologic Oncology 94 (1) 25–32.

41. GoodmanMT, LurieG, ThompsonPJ, McDuffieKE, CarneyME (2008) Association of two common single-nucleotide polymorphisms in the CYP19A1 locus and ovarian cancer risk. Endocr Relat Cancer 15 (4) 1055–60.

42. OrsulicS, LiY, SoslowRA, Vitale-CrossLA, GutkindJS, et al. (2002) Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1: 53–62.

43. Flesken-NikitinA, ChoiKC, EngJP, ShmidtEN, NikitinAY (2003) Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res 63: 3459–3463.

44. WuR, Hendrix-LucasN, KuickR, ZhaiY, SchwartzDR, et al. (2007) Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell 11: 321–33.

45. FanHY, LiuZ, PaquetM, WangJ, LydonJP, et al. (2009) Cell type specific targeted mutation of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult in ovarian surface epithelial cells. Cancer Res 69: 6463–6472.

46. KimJ, CoffeyDM, CreightonCJ, YuZ, HawkinsSM, et al. (2012) High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci U S A 109: 3921–6.

47. SchildkrautJM, SchwinglPJ, BastosE, EvanoffA, HughesC (1996) Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet Gynecol 88: 554–559.

48. HalperinR, HadasE, LangerR, BukovskyI, SchneiderD (1999) Peritoneal fluid gonadotropins and ovarian hormones in patients with ovarian cancer. Int J Gynecol Cancer 9: 502–507.

49. KothariR, ArgentaP, FowlerJ, CarterJ, ShimpW (2010) Antiestrogen therapy in recurrent ovarian cancer resulting in 28 months of stable disease: a case report and review of the literature. Arch Oncol 18: 32–35.

50. ArgentaPA, ThomasSG, JudsonPL, DownsLSJr, GellerMA, et al. (2009) A phase II study of fulvestrant in the treatment of multiply-recurrent epithelial ovarian cancer. Gynecol Oncol 113: 205–9.

51. JarboeE, FolkinsA, NucciMR, KindelbergerD, DrapkinR, et al. (2008) Serous carcinogenesis in the fallopian tube: a descriptive classification. Int J Gynecol Pathol 27: 1–9.

52. Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474: 609–615.

53. MullanyLK, RichardsJS (2012) Minireview: Animal models and mechanisms of ovarian cancer development. Endocrinology 153: 1585–1592.

54. HashiguchiY, TsudaH, YamamotoK, InoueT, IshikoO, et al. (2001) Combined analysis of p53 and RB pathways in epithelial ovarian cancer. Hum Pathol 32: 988–96.

55. RischHA, McLaughlinJR, ColeDE, RosenB, BradleyL, et al. (2001) Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet 68: 700–710.

56. RehmS, DierksenD, DeerbergF (1984) Spontaneous ovarian tumors in Han:NMRI mice: histological classification, incidence and influence of food restriction. J Natl Cancer Inst 72: 1383–96.

57. AllisonRH, MorganKT (1987) Ovarian neoplasms in F344 rats and B6C3F1 mice. Environ Helath Perspect 73: 91–106.

58. CapenCharles C (2004) Mechanisms of hormone-mediated carcinogenesis of the ovary. Toxicologic Pathology 32 (Suppl.2) 1–5.

59. MurphyED (1972) Hyperplastic and early neoplastic changes in the ovaries of mice after genic deletion of germ cells. J Natl Cancer Inst 48: 1283–95.

60. GardnerWU (1950) Ovarian and lymphoid tumors in female mice subsequent to Roentgen-ray irradiation and hormone treatment. Proc Soc Exp Biol Med 75: 434–6.

61. CapenCC, BeamerWG, TennentBJ, StitzelKA (1995) Mechanisms of hormone-mediated carcinogenesis of the ovary in mice. Mutation Research 333: 143–51.

62. LuX, NannengaB, DonehowerLA (2005) PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19: 1162–74.

63. BulavinDV, DemidovON, SaitoS, KauraniemiP, PhillipsC, et al. (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31: 210–215.

64. HanHS, YuE, SongJY, ParkJY, JangSJ, et al. (2009) The estrogen receptor alpha pathway induces oncogenic Wip1 phosphatase gene expression. Mol Cancer Res 7: 713–23.

65. LiQ, CheonYP, et al. (2004) “A novel pathway involving progesterone receptor, 12/15-lipoxygenase-derived eicosanoids, and peroxisome proliferator-activated receptor gamma regulates implantation in mice.”. J Biol Chem 279 (12) 11570–11581.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#