#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Final Pre-40S Maturation Depends on the Functional Integrity of the 60S Subunit Ribosomal Protein L3


Recent progress has provided us with detailed knowledge of the structure and function of eukaryotic ribosomes. However, our understanding of the intricate processes of pre-ribosome assembly and the transition to translation-competent ribosomal subunits remains incomplete. The early and intermediate steps of ribosome assembly occur successively in the nucleolus and nucleoplasm. The pre-ribosomal subunits are then exported to the cytoplasm where final maturation steps, notably including D site cleavage of the 20S pre-rRNA to mature 18S rRNA, confer subunit joining and translation competence. Recent evidence indicates that pre-40S subunits are subject to a quality control step involving the GTP-dependent translation initiation factor eIF5B/Fun12, in the context of 80S-like ribosomes. Here, we demonstrate the involvement of 60S subunits in promoting 20S pre-rRNA cleavage. In particular, we show that a specific point mutation in the 60S subunit ribosomal protein L3 (rpl3[W255C]) leads to the accumulation of pre-40S particles that contain the 20S pre-rRNA but are translation-competent. Notably, this mutation prevents the stimulation of the GTPase activity of eIF5B/Fun12, which is also required for site D cleavage. We conclude that L3 plays an important role in regulating the function of eIF5B/Fun12 during 3′ end processing of 18S rRNA at site D, in the context of 80S ribosomes that have not yet engaged in translation.


Vyšlo v časopise: Final Pre-40S Maturation Depends on the Functional Integrity of the 60S Subunit Ribosomal Protein L3. PLoS Genet 10(3): e32767. doi:10.1371/journal.pgen.1004205
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004205

Souhrn

Recent progress has provided us with detailed knowledge of the structure and function of eukaryotic ribosomes. However, our understanding of the intricate processes of pre-ribosome assembly and the transition to translation-competent ribosomal subunits remains incomplete. The early and intermediate steps of ribosome assembly occur successively in the nucleolus and nucleoplasm. The pre-ribosomal subunits are then exported to the cytoplasm where final maturation steps, notably including D site cleavage of the 20S pre-rRNA to mature 18S rRNA, confer subunit joining and translation competence. Recent evidence indicates that pre-40S subunits are subject to a quality control step involving the GTP-dependent translation initiation factor eIF5B/Fun12, in the context of 80S-like ribosomes. Here, we demonstrate the involvement of 60S subunits in promoting 20S pre-rRNA cleavage. In particular, we show that a specific point mutation in the 60S subunit ribosomal protein L3 (rpl3[W255C]) leads to the accumulation of pre-40S particles that contain the 20S pre-rRNA but are translation-competent. Notably, this mutation prevents the stimulation of the GTPase activity of eIF5B/Fun12, which is also required for site D cleavage. We conclude that L3 plays an important role in regulating the function of eIF5B/Fun12 during 3′ end processing of 18S rRNA at site D, in the context of 80S ribosomes that have not yet engaged in translation.


Zdroje

1. SchmeingTM, RamakrishnanV (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461: 1234–1242.

2. MelnikovS, Ben-ShemA, Garreau de LoubresseN, JennerL, YusupovaG, et al. (2012) One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol 19: 560–567.

3. HenrasAK, SoudetJ, GerusM, LebaronS, Caizergues-FerrerM, et al. (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65: 2334–2359.

4. KresslerD, HurtE, BasslerJ (2010) Driving ribosome assembly. Biochim Biophys Acta 1803: 673–683.

5. de la Cruz J, Kressler D, Linder P (2004) Ribosomal subunit assembly. In: Olson MOJ, editor. Nucleolus. Georgetown: Kluwer academic. Landes Bioscience/eurekah.com. pp. 258–285.

6. ThomsonE, TollerveyD (2010) The final step in 5.8S rRNA processing is cytoplasmic in Saccharomyces cerevisiae. Mol Cell Biol 30: 976–984.

7. UdemSA, WarnerJR (1973) The cytoplasmic maturation of a ribosomal precursor ribonucleic acid in yeast. J Biol Chem 248: 1412–1416.

8. PanseVG, JohnsonAW (2010) Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci 35: 260–266.

9. KosM, TollerveyD (2010) Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 37: 809–820.

10. MullineuxST, LafontaineDL (2012) Mapping the cleavage sites on mammalian pre-rRNAs: Where do we stand? Biochimie 94: 1521–1532.

11. DezC, HouseleyJ, TollerveyD (2006) Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO J 25: 1534–1546.

12. BabianoR, GamalindaM, WoolfordJLJr, de la CruzJ (2012) Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function. Mol Cell Biol 32: 3228–3241.

13. WarnerJR (1971) The assembly of ribosomes in yeast. J Biol Chem 246: 447–454.

14. ZempI, KutayU (2007) Nuclear export and cytoplasmic maturation of ribosomal subunits. FEBS Lett 581: 2783–2793.

15. GartmannM, BlauM, ArmacheJP, MielkeT, TopfM, et al. (2010) Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. J Biol Chem 285: 14848–14851.

16. SenguptaJ, BussiereC, PallesenJ, WestM, JohnsonAW, et al. (2010) Characterization of the nuclear export adaptor protein Nmd3 in association with the 60S ribosomal subunit. J Cell Biol 189: 1079–1086.

17. Ben-ShemA, Garreau de LoubresseN, MelnikovS, JennerL, YusupovaG, et al. (2011) The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334: 1524–1529.

18. LafontaineDLJ, PreissT, TollerveyD (1998) Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Mol Cell Biol 18: 2360–2370.

19. PertschyB, SchneiderC, GnadigM, SchaferT, TollerveyD, et al. (2009) RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1. J Biol Chem 284: 35079–35091.

20. StrunkBS, LoucksCR, SuM, VashisthH, ChengS, et al. (2011) Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 333: 1449–1453.

21. KarbsteinK (2011) Inside the 40S ribosome assembly machinery. Curr Opin Chem Biol 15: 657–663.

22. MeskauskasA, DinmanJD (2010) A molecular clamp ensures allosteric coordination of peptidyltransfer and ligand binding to the ribosomal A-site. Nucleic Acids Res 38: 7800–7813.

23. MeskauskasA, DinmanJD (2007) Ribosomal protein L3: gatekeeper to the A site. Mol Cell 25: 877–888.

24. RosadoIV, KresslerD, de la CruzJ (2007) Functional analysis of Saccharomyces cerevisiae ribosomal protein Rpl3p in ribosome synthesis. Nucleic Acids Res 35: 4203–4213.

25. StrunkBS, NovakMN, YoungCL, KarbsteinK (2012) A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150: 111–121.

26. LebaronS, SchneiderC, van NuesRW, SwiatkowskaA, WalshD, et al. (2012) Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol 19: 744–753.

27. PetrovA, MeskauskasA, DinmanJD (2004) Ribosomal protein L3: influence on ribosome structure and function. RNA Biol 1: 59–65.

28. RosadoIV, DezC, LebaronS, Caizergues-FerrerM, HenryY, et al. (2007) Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S ribosomal subunit biogenesis. Mol Cell Biol 27: 1207–1221.

29. de la CruzJ, LacombeT, DelocheO, LinderP, KresslerD (2004) The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae. Genetics 166: 1687–1699.

30. MeskauskasA, HargerJW, JacobsKL, DinmanJD (2003) Decreased peptidyltransferase activity correlates with increased programmed −1 ribosomal frameshifting and viral maintenance defects in the yeast Saccharomyces cerevisiae. RNA 9: 982–992.

31. OhtakeY, WicknerRB (1995) Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol Cell Biol 15: 2772–2781.

32. JakovljevicJ, de MayoloPA, MilesTD, NguyenTM, Léger-SilvestreI, et al. (2004) The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol Cell 14: 331–342.

33. BrandRC, KlootwijkJ, van SteenbergenTJM, de KokAJ, PlantaRJ (1977) Secondary methylation of yeast ribosomal precursor RNA. Eur J Biochem 75: 311–318.

34. LacombeT, García-GómezJJ, de la CruzJ, RoserD, HurtE, et al. (2009) Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits. Mol Microbiol 72: 69–84.

35. FordCL, Randal-WhitisL, EllisSR (1999) Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res 59: 704–710.

36. GrannemanS, NandineniMR, BasergaSJ (2005) The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol Cell Biol 25: 10352–10364.

37. SoudetJ, GelugneJP, Belhabich-BaumasK, Caizergues-FerrerM, MouginA (2010) Immature small ribosomal subunits can engage in translation initiation in Saccharomyces cerevisiae. EMBO J 29: 80–92.

38. AltmannM, SonenbergN, TrachselH (1989) Translation in Saccharomyces cerevisiae: initiation factor 4E-dependent cell-free system. Mol Cell Biol 9: 4467–4472.

39. WaldronC, JundR, LacrouteF (1977) Evidence for a high proportion of inactive ribosomes in slow-growing yeast cells. Biochem J 168: 409–415.

40. PestovaTV, LomakinIB, LeeJH, ChoiSK, DeverTE, et al. (2000) The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403: 332–335.

41. LiZ, LeeI, MoradiE, HungNJ, JohnsonAW, et al. (2009) Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol 7: e1000213.

42. DengY, SingerRH, GuW (2008) Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 22: 1037–1050.

43. DeverTE, GreenR (2012) The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harbor Perspect Biol 4: a013706.

44. Roll-MecakA, CaoC, DeverTE, BurleySK (2000) X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103: 781–792.

45. ClementiN, PolacekN (2010) Ribosome-associated GTPases: the role of RNA for GTPase activation. RNA Biol 7: 521–527.

46. UnbehaunA, MarintchevA, LomakinIB, DidenkoT, WagnerG, et al. (2007) Position of eukaryotic initiation factor eIF5B on the 80S ribosome mapped by directed hydroxyl radical probing. EMBO J 26: 3109–3123.

47. GrannemanS, PetfalskiE, SwiatkowskaA, TollerveyD (2010) Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J 29: 2026–2036.

48. MangiarottiG, ChiabergeS, BulfoneS (1997) rRNA maturation as a “quality” control step in ribosomal subunit assembly in Dictyostelium discoideum. J Biol Chem 272: 27818–27822.

49. BécamAM, NasrF, RackiWJ, ZagulskiM, HerbertCJ (2001) Ria1p (Ynl163c), a protein similar to elongation factors 2, is involved in the biogenesis of the 60S subunit of the ribosome in Saccharomyces cerevisiae. Mol Genet Genomics 266: 454–462.

50. SengerB, LafontaineDL, GraindorgeJS, GadalO, CamassesA, et al. (2001) The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Mol Cell 8: 1363–1373.

51. GraindorgeJS, RousselleJC, SengerB, LenormandP, NamaneA, et al. (2005) Deletion of EFL1 results in heterogeneity of the 60 S GTPase-associated rRNA conformation. J Mol Biol 352: 355–369.

52. SiK, MaitraU (1999) The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol Cell Biol 19: 1416–1426.

53. KlingeS, Voigts-HoffmannF, LeibundgutM, ArpagausS, BanN (2011) Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6. Science 334: 941–948.

54. BussiereC, HashemY, AroraS, FrankJ, JohnsonAW (2012) Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. J Cell Biol 197: 747–759.

55. MenneTF, GoyenecheaB, Sanchez-PuigN, WongCC, TonkinLM, et al. (2007) The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nature Genet 39: 486–495.

56. LoKY, LiZ, BussiereC, BressonS, MarcotteEM, et al. (2010) Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol Cell 39: 196–208.

57. LebretonA, SaveanuC, DecourtyL, RainJC, JacquierA, et al. (2006) A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. J Cell Biol 173: 349–360.

58. DemoinetE, JacquierA, LutfallaG, Fromont-RacineM (2007) The Hsp40 chaperone Jjj1 is required for the nucleo-cytoplasmic recycling of preribosomal factors in Saccharomyces cerevisiae. RNA 13: 1570–1581.

59. PertschyB, SaveanuC, ZisserG, LebretonA, TenggM, et al. (2007) Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1. Mol Cell Biol 27: 6581–6592.

60. KarbsteinK (2013) Quality control mechanisms during ribosome maturation. Trends Cell Biol

61. ThomasBJ, RothsteinR (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56: 619–630.

62. BrachmannCB, DaviesA, CostGJ, CaputoE, LiJ, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115–132.

63. de la CruzJ, IostI, KresslerD, LinderP (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94: 5201–5206.

64. Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics: a Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor, N. Y.: Cold Spring Harbor Laboratory Press.

65. GietzRD, SuginoA (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534.

66. GadalO, StraussD, KesslJ, TrumpowerB, TollerveyD, et al. (2001) Nuclear export of 60S ribosomal subunit depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol Cell Biol 21: 3405–3415.

67. MilkereitP, StraussD, BasslerJ, GadalO, KuhnH, et al. (2003) A Noc-complex specifically involved in the formation and nuclear export of ribosomal 40S subunits. J Biol Chem 278: 4072–4081.

68. BasslerJ, GrandiP, GadalO, LessmannT, PetfalskiE, et al. (2001) Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell 8: 517–529.

69. KresslerD, de la CruzJ, RojoM, LinderP (1997) Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 17: 7283–7294.

70. de la CruzJ, KresslerD, RojoM, TollerveyD, LinderP (1998) Spb4p, an essential putative RNA helicase, is required for a late step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. RNA 4: 1268–1281.

71. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al. (1994) Saccharomyces cerevisiae. Current Protocols in Molecular Biology. New York, N. Y.: John Wiley & Sons, Inc. pp. 13.10.11–13.14.17.

72. Venema J, Planta RJ, Raué HA (1998) In vivo mutational analysis of ribosomal RNA in Saccharomyces cerevisiae. In: Martin R, editor. Protein synthesis: Methods and protocols. Totowa, N. J.: Humana Press. pp. 257–270.

73. BabianoR, de la CruzJ (2010) Ribosomal protein L35 is required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 38: 5177–5192.

74. GrosshansH, HurtE, SimosG (2000) An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev 14: 830–840.

75. LebaronS, FromentC, Fromont-RacineM, RainJC, MonsarratB, et al. (2005) The splicing ATPase Prp43p is a component of multiple preribosomal particles. Mol Cell Biol 25: 9269–9282.

76. PettersenEF, GoddardTD, HuangCC, CouchGS, GreenblattDM, et al. (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#