#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Coronary Heart Disease-Associated Variation in Disrupts a miR-224 Binding Site and miRNA-Mediated Regulation


Both genetic and environmental factors cumulatively contribute to coronary heart disease risk in human populations. Large-scale meta-analyses of genome-wide association studies have now leveraged common genetic variation to identify multiple sites of disease susceptibility; however, the causal mechanisms for these associations largely remain elusive. One of these disease-associated variants, rs12190287, resides in the 3′untranslated region of the vascular developmental transcription factor, TCF21. Intriguingly, this variant is shown to disrupt the seed binding sequence for microRNA-224, and through altered RNA secondary structure and binding kinetics, leads to dysregulated TCF21 gene expression in response to disease-relevant stimuli. Importantly TCF21 and miR-224 expression levels were perturbed in human atherosclerotic lesions. Along with our previous reports on the transcriptional regulatory mechanisms altered by this variant, these studies shed new light on the complex heritable mechanisms of coronary heart disease risk that are amenable to therapeutic intervention.


Vyšlo v časopise: Coronary Heart Disease-Associated Variation in Disrupts a miR-224 Binding Site and miRNA-Mediated Regulation. PLoS Genet 10(3): e32767. doi:10.1371/journal.pgen.1004263
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004263

Souhrn

Both genetic and environmental factors cumulatively contribute to coronary heart disease risk in human populations. Large-scale meta-analyses of genome-wide association studies have now leveraged common genetic variation to identify multiple sites of disease susceptibility; however, the causal mechanisms for these associations largely remain elusive. One of these disease-associated variants, rs12190287, resides in the 3′untranslated region of the vascular developmental transcription factor, TCF21. Intriguingly, this variant is shown to disrupt the seed binding sequence for microRNA-224, and through altered RNA secondary structure and binding kinetics, leads to dysregulated TCF21 gene expression in response to disease-relevant stimuli. Importantly TCF21 and miR-224 expression levels were perturbed in human atherosclerotic lesions. Along with our previous reports on the transcriptional regulatory mechanisms altered by this variant, these studies shed new light on the complex heritable mechanisms of coronary heart disease risk that are amenable to therapeutic intervention.


Zdroje

1. DeloukasP, KanoniS, WillenborgC, FarrallM, AssimesTL, et al. (2012) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45: 25–33.

2. SchunkertH, KonigIR, KathiresanS, ReillyMP, AssimesTL, et al. (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43: 333–338.

3. LuX, WangL, ChenS, HeL, YangX, et al. (2012) Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet 44: 890–894.

4. HidaiH, BardalesR, GoodwinR, QuertermousT, QuertermousEE (1998) Cloning of capsulin, a basic helix-loop-helix factor expressed in progenitor cells of the pericardium and the coronary arteries. Mech Dev 73: 33–43.

5. LuJ, RichardsonJA, OlsonEN (1998) Capsulin: a novel bHLH transcription factor expressed in epicardial progenitors and mesenchyme of visceral organs. Mech Dev 73: 23–32.

6. QuagginSE, Vanden HeuvelGB, IgarashiP (1998) Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mech Dev 71: 37–48.

7. RobbL, MifsudL, HartleyL, BibenC, CopelandNG, et al. (1998) epicardin: A novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Dev Dyn 213: 105–113.

8. AcharyaA, BaekST, HuangG, EskiocakB, GoetschS, et al. (2012) The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139: 2139–2149.

9. BraitschCM, CombsMD, QuagginSE, YutzeyKE (2012) Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev Biol 368: 345–357.

10. MillerCL, AndersonDR, KunduRK, RaiesdanaA, NurnbergST, et al. (2013) Disease-Related Growth Factor and Embryonic Signaling Pathways Modulate an Enhancer of TCF21 Expression at the 6q23.2 Coronary Heart Disease Locus. PLoS Genet 9: e1003652.

11. ZhongH, BeaulaurierJ, LumPY, MolonyC, YangX, et al. (2010) Liver and adipose expression associated SNPs are enriched for association to type 2 diabetes. PLoS Genet 6: e1000932.

12. KimJ, BartelDP (2009) Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression. Nat Biotechnol 27: 472–477.

13. FriedmanRC, FarhKK, BurgeCB, BartelDP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105.

14. BartelDP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

15. FarRK, NedbalW, SczakielG (2001) Concepts to automate the theoretical design of effective antisense oligonucleotides. Bioinformatics 17: 1058–1061.

16. PatzelV, SteidlU, KronenwettR, HaasR, SczakielG (1999) A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability. Nucleic Acids Res 27: 4328–4334.

17. KeddeM, van KouwenhoveM, ZwartW, Oude VrielinkJA, ElkonR, et al. (2010) A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12: 1014–1020.

18. HaasU, SczakielG, LauferSD (2012) MicroRNA-mediated regulation of gene expression is affected by disease-associated SNPs within the 3′-UTR via altered RNA structure. RNA Biol 9: 924–937.

19. RajkowitschL, ChenD, StampflS, SemradK, WaldsichC, et al. (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4: 118–130.

20. WunscheW, SczakielG (2005) The activity of siRNA in mammalian cells is related to the kinetics of siRNA-target recognition in vitro: mechanistic implications. J Mol Biol 345: 203–209.

21. NedbalW, HomannM, SczakielG (1997) The association of complementary ribonucleic acids can be strongly increased without lowering Arrhenius activation energies or significantly altering structures. Biochemistry 36: 13552–13557.

22. RainesEW, RossR (1993) Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis. Br Heart J 69: S30–37.

23. SmithCL, BaekST, SungCY, TallquistMD (2011) Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res 108: e15–26.

24. GraingerDJ (2007) TGF-beta and atherosclerosis in man. Cardiovasc Res 74: 213–222.

25. BraitschCM, KanisicakO, van BerloJH, MolkentinJD, YutzeyKE (2013) Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J Mol Cell Cardiol 65: 108–19.

26. HessJ, AngelP, Schorpp-KistnerM (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117: 5965–5973.

27. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 43: 339–344.

28. NicolosoMS, SunH, SpizzoR, KimH, WickramasingheP, et al. (2010) Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 70: 2789–2798.

29. ZhangC (2010) MicroRNAs in vascular biology and vascular disease. J Cardiovasc Transl Res 3: 235–240.

30. RyanBM, RoblesAI, HarrisCC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10: 389–402.

31. SciscianiC, VossioS, GuerrieriF, SchinzariV, De IacoR, et al. (2012) Transcriptional regulation of miR-224 upregulated in human HCCs by NFkappaB inflammatory pathways. J Hepatol 56: 855–861.

32. YaoG, YinM, LianJ, TianH, LiuL, et al. (2010) MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 24: 540–551.

33. MillC, GeorgeSJ (2012) Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res 95: 233–240.

34. TsaousiA, MillC, GeorgeSJ (2011) The Wnt pathways in vascular disease: lessons from vascular development. Curr Opin Lipidol 22: 350–357.

35. GokhaleA, KunderR, GoelA, SarinR, MoiyadiA, et al. (2010) Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. J Cancer Res Ther 6: 521–529.

36. PamukcuB, LipGY, ShantsilaE (2011) The nuclear factor–kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease. Thromb Res 128: 117–123.

37. RossR, Bowen-PopeDF, RainesEW (1990) Platelet-derived growth factor and its role in health and disease. Philos Trans R Soc Lond B Biol Sci 327: 155–169.

38. WhiteJT, ZhangB, CerqueiraDM, TranU, WesselyO (2010) Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development 137: 1863–1873.

39. DejongV, DegeorgesA, FilleurS, Ait-Si-AliS, MettouchiA, et al. (1999) The Wilms' tumor gene product represses the transcription of thrombospondin 1 in response to overexpression of c-Jun. Oncogene 18: 3143–3151.

40. McCoyC, McGeeSB, CornwellMM (1999) The Wilms' tumor suppressor, WT1, inhibits 12-O-tetradecanoylphorbol-13-acetate activation of the multidrug resistance-1 promoter. Cell Growth Differ 10: 377–386.

41. GerritsA, LiY, TessonBM, BystrykhLV, WeersingE, et al. (2009) Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genet 5: e1000692.

42. AckermannM, Sikora-WohlfeldW, BeyerA (2013) Impact of natural genetic variation on gene expression dynamics. PLoS Genet 9: e1003514.

43. MarJC, MatigianNA, Mackay-SimA, MellickGD, SueCM, et al. (2011) Variance of gene expression identifies altered network constraints in neurological disease. PLoS Genet 7: e1002207.

44. SmithLT, LinM, BrenaRM, LangJC, SchullerDE, et al. (2006) Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23-q24 in lung and head and neck cancer. Proc Natl Acad Sci U S A 103: 982–987.

45. RichardsKL, ZhangB, SunM, DongW, ChurchillJ, et al. (2011) Methylation of the candidate biomarker TCF21 is very frequent across a spectrum of early-stage nonsmall cell lung cancers. Cancer 117: 606–617.

46. ArabK, SmithLT, GastA, WeichenhanD, HuangJP, et al. (2011) Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma. Carcinogenesis 32: 1467–1473.

47. CostaVL, HenriqueR, DanielsenSA, EknaesM, PatricioP, et al. (2011) TCF21 and PCDH17 methylation: An innovative panel of biomarkers for a simultaneous detection of urological cancers. Epigenetics 6: 1120–1130.

48. PicardV, Ersdal-BadjuE, LuA, BockSC (1994) A rapid and efficient one-tube PCR-based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res 22: 2587–2591.

49. EckardtS, RombyP, SczakielG (1997) Implications of RNA structure on the annealing of a potent antisense RNA directed against the human immunodeficiency virus type 1. Biochemistry 36: 12711–12721.

50. PatzelV, SczakielG (2000) In vitro selection supports the view of a kinetic control of antisense RNA-mediated inhibition of gene expression in mammalian cells. Nucleic Acids Res 28: 2462–2466.

51. ZukerM (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415.

52. MathewsDH, SabinaJ, ZukerM, TurnerDH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288: 911–940.

53. KingJY, FerraraR, TabibiazarR, SpinJM, ChenMM, et al. (2005) Pathway analysis of coronary atherosclerosis. Physiol Genomics 23: 103–118.

54. HomannM, RittnerK, SczakielG (1993) Complementary large loops determine the rate of RNA duplex formation in vitro in the case of an effective antisense RNA directed against the human immunodeficiency virus type 1. J Mol Biol 233: 7–15.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#