#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Conserved DNA Repeat Promotes Selection of a Diverse Repertoire of Surface Antigens from the Genomic Archive


Chromosomal translocations can fuel genetic change or cause catastrophic genomic damage. African trypanosomes, exemplified by Trypanosoma brucei sub-species, are unicellular parasites that can chronically infect their human and livestock hosts by using a strategy of antigenic variation by which they repeatedly change their protein coats. Switching the surface coat requires the accurate selection and translocation of a single silent coat gene, from a large genomic archive, into an actively transcribed site. How the coat genes from within this deep archive are selected and activated was unproven. Here we show that a specific repetitive DNA sequence is required to access coat genes from diverse sites within the genome. The likely outcome of restricting this process of coat gene selection in natural infections would be a reduction in the chronic nature of African trypanosomiasis.


Vyšlo v časopise: A Conserved DNA Repeat Promotes Selection of a Diverse Repertoire of Surface Antigens from the Genomic Archive. PLoS Genet 12(5): e32767. doi:10.1371/journal.pgen.1005994
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005994

Souhrn

Chromosomal translocations can fuel genetic change or cause catastrophic genomic damage. African trypanosomes, exemplified by Trypanosoma brucei sub-species, are unicellular parasites that can chronically infect their human and livestock hosts by using a strategy of antigenic variation by which they repeatedly change their protein coats. Switching the surface coat requires the accurate selection and translocation of a single silent coat gene, from a large genomic archive, into an actively transcribed site. How the coat genes from within this deep archive are selected and activated was unproven. Here we show that a specific repetitive DNA sequence is required to access coat genes from diverse sites within the genome. The likely outcome of restricting this process of coat gene selection in natural infections would be a reduction in the chronic nature of African trypanosomiasis.


Zdroje

1. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science (New York, NY). 2005;309: 416–422.

2. Cross GAM, Kim H-S, Wickstead B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Molecular and biochemical parasitology. 2014;195: 59–73. doi: 10.1016/j.molbiopara.2014.06.004 24992042

3. Overath P, Engstler M. Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol. 2004;53: 735–744. 15255888

4. Barry JD, McCulloch R. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol. 2001;49: 1–70. 11461029

5. Cross GA. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975;71: 393–417. 645

6. Wickstead B, Ersfeld K, Gull K. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res. 2004;14: 1014–1024. 15173109

7. Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, et al. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS ONE. 2008;3: e3527. doi: 10.1371/journal.pone.0003527 18953401

8. Michels PA, Van der Ploeg LH, Liu AY, Borst P. The inactivation and reactivation of an expression-linked gene copy for a variant surface glycoprotein in Trypanosoma brucei. EMBO J. 1984;3: 1345–1351. 6086319

9. Pays E, Guyaux M, Aerts D, Van Meirvenne N, Steinert M. Telomeric reciprocal recombination as a possible mechanism for antigenic variation in trypanosomes. Nature. 1985;316: 562–564. 2412122

10. De Lange T, Kooter JM, Michels PA, Borst P. Telomere conversion in trypanosomes. Nucleic Acids Res. 1983;11: 8149–8165. 6324075

11. Robinson NP, Burman N, Melville SE, Barry JD. Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol Cell Biol. 1999;19: 5839–5846. 10454531

12. Boothroyd CE, Dreesen O, Leonova T, Ly KI, Figueiredo LM, Cross GAM, et al. A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature. 2009;459: 278–281. doi: 10.1038/nature07982 19369939

13. Hovel-Miner GA, Boothroyd CE, Mugnier M, Dreesen O, Cross GAM, Papavasiliou FN. Telomere length affects the frequency and mechanism of antigenic variation in Trypanosoma brucei. PLoS Pathog. 2012;8: e1002900. doi: 10.1371/journal.ppat.1002900 22952449

14. Glover L, Alsford S, Horn D. DNA break site at fragile subtelomeres determines probability and mechanism of antigenic variation in African trypanosomes. PLoS Pathog. 2013;9: e1003260. doi: 10.1371/journal.ppat.1003260 23555264

15. Morrison LJ, Majiwa P, Read AF, Barry JD. Probabilistic order in antigenic variation of Trypanosoma brucei. Int J Parasitol. 2005;35: 961–972. 16000200

16. Aguilera A, García-Muse T. Causes of genome instability. Annu Rev Genet. 2013;47: 1–32. doi: 10.1146/annurev-genet-111212-133232 23909437

17. Liu AY, Van der Ploeg LH, Rijsewijk FA, Borst P. The transposition unit of variant surface glycoprotein gene 118 of Trypanosoma brucei. Presence of repeated elements at its border and absence of promoter-associated sequences. J Mol Biol. 1983;167: 57–75. 6306255

18. Campbell DA, van Bree MP, Boothroyd JC. The 5'-limit of transposition and upstream barren region of a trypanosome VSG gene: tandem 76 base-pair repeats flanking (TAA)90. Nucleic Acids Res. 1984;12: 2759–2774. 6324125

19. Aline R, MacDonald G, Brown E, Allison J, Myler P, Rothwell V, et al. (TAA)n within sequences flanking several intrachromosomal variant surface glycoprotein genes in Trypanosoma brucei. Nucleic Acids Res. 1985;13: 3161–3177. 2987874

20. McCulloch R, Rudenko G, Borst P. Gene conversions mediating antigenic variation in Trypanosoma brucei can occur in variant surface glycoprotein expression sites lacking 70-base-pair repeat sequences. Mol Cell Biol. 1997;17: 833–843. 9001237

21. Carnes J, Anupama A, Balmer O, Jackson A, Lewis M, Brown R, et al. Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl Trop Dis. 2015;9: e3404. doi: 10.1371/journal.pntd.0003404 25568942

22. Schwede A, Macleod OJS, MacGregor P, Carrington M. How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins? PLoS Pathog. 2015;11: e1005259. doi: 10.1371/journal.ppat.1005259 26719972

23. Kim H-S, Cross GAM. TOPO3alpha influences antigenic variation by monitoring expression-site-associated VSG switching in Trypanosoma brucei. PLoS Pathog. 2010;6: e1000992. doi: 10.1371/journal.ppat.1000992 20628569

24. Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Molecular and biochemical parasitology. 2002;125: 211–216. 12467990

25. Davies KP, Carruthers VB, Cross GA. Manipulation of the vsg co-transposed region increases expression-site switching in Trypanosoma brucei. Molecular and biochemical parasitology. 1997;86: 163–177. 9200123

26. Longhese MP, Mantiero D, Clerici M. The cellular response to chromosome breakage. Mol Microbiol. 2006;60: 1099–1108. 16689788

27. Cann KL, Hicks GG. Regulation of the cellular DNA double-strand break response. Biochem Cell Biol. 2007;85: 663–674. 18059525

28. Mugnier MR, Cross GAM, Papavasiliou FN. The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science (New York, NY). 2015;347: 1470–1473.

29. Borst P, Ulbert S. Control of VSG gene expression sites. Molecular and biochemical parasitology. 2001;114: 17–27. 11356510

30. Horn D. Antigenic variation in African trypanosomes. Molecular and biochemical parasitology. 2014;195: 123–129. doi: 10.1016/j.molbiopara.2014.05.001 24859277

31. Van der Ploeg LH, Valerio D, De Lange T, Bernards A, Borst P, Grosveld FG. An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genome. Nucleic Acids Res. 1982;10: 5905–5923. 6292859

32. Pays E, Nolan DP. Expression and function of surface proteins in Trypanosoma brucei. Molecular and biochemical parasitology. 1998;91: 3–36. 9574923

33. Borst P, Bitter W, Blundell PA, Chaves I, Cross M, Gerrits H, et al. Control of VSG gene expression sites in Trypanosoma brucei. Molecular and biochemical parasitology. 1998;91: 67–76. 9574926

34. Ohshima K, Kang S, Larson JE, Wells RD. TTA.TAA triplet repeats in plasmids form a non-H bonded structure. J Biol Chem. 1996;271: 16784–16791. 8663378

35. Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. Nature Publishing Group; 2009;7: 493–503.

36. Fujitani Y, Yamamoto K, Kobayashi I. Dependence of frequency of homologous recombination on the homology length. Genetics. 1995;140: 797–809. 7498755

37. Navarro M, Gull K. A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature. 2001;414: 759–763. 11742402

38. Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Molecular and biochemical parasitology. 1999;99: 89–101. 10215027

39. Burkard G, Fragoso CM, Roditi I. Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. Molecular and biochemical parasitology. 2007;153: 220–223. 17408766

40. Hirumi H, Hirumi K. Axenic culture of African trypanosome bloodstream forms. Parasitol Today (Regul Ed). 1994;10: 80–84.

41. Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281: 301–311. 15220539

42. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29: 644–652. doi: 10.1038/nbt.1883 21572440

43. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10: 421. doi: 10.1186/1471-2105-10-421 20003500

44. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22: 1658–1659. 16731699

45. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28: 3150–3152. doi: 10.1093/bioinformatics/bts565 23060610

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2016 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#