#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Research Agenda for Malaria Eradication: Vector Control


Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. The research needs for these areas will be to sustain and perhaps improve the effectiveness of currently available tools. For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population.


Vyšlo v časopise: A Research Agenda for Malaria Eradication: Vector Control. PLoS Med 8(1): e32767. doi:10.1371/journal.pmed.1000401
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1000401

Souhrn

Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. The research needs for these areas will be to sustain and perhaps improve the effectiveness of currently available tools. For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population.


Zdroje

1. EnayatiA

HemingwayJ

2010 Malaria management: Past, present, and future. Ann Rev Entomol 55 569 591

2. HaySI

RogersDJ

ToomerJF

SnowRW

2000 Annual Plasmodium falciparum entomological inoculation rates [EIR] across Africa: Literature survey, internet access and review. Trans R Soc Trop Med Hyg 94 113 127

3. Kelly-HopeLA

McKenzieFE

2009 The multiplicity of malaria transmission: A review of entomological inoculation rate measurements and methods across sub-Sahan Africa. Malar J 8 19

4. ShaukatAM

BremanJG

McKenzieFE

2010 Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination. Malar J 9 122

5. RansonH

AbdallahH

BadoloA

GuelbeogoWM

Kerah-HinzoumbéC

2009 Insecticide resistance in Anopheles gambiae: Data from the first year of a multi-country study highlight the extent of the problem. Malar J 8 299

6. TereniusO

MarinottiO

SieglaffD

JamesAA

2008 Molecular genetic manipulation of vector mosquitoes. Cell Host Microbe 13 417 423

7. SinkinsSP

GouldF

2006 Gene drive systems for insect disease vectors. Nat Rev Genet 7 427 435

8. The malERA Consultative Group on Monitoring, Evaluation, and Surveillance 2011 A research agenda for malaria eradication: Monitoring, evaluation, and surveillance. PLoS Med 8 e1000400 doi:10.1371/journal.pmed.1000400

9. The malERA Consultative Group on Modeling 2011 A research agenda for malaria eradication: Modeling. PLoS Med 8 e1000403 doi:10.1371/journal.pmed.1000403

10. PampanaEA

1969 A textbook of malaria eradication. London Oxford University Press

11. Bruce-ChwattLJ

1987 Malaria and its control: present situation and future prospects. Ann Rev Public Health 8 75 110

12. NájeraJ

González-SilvaM

AlonsoPL

2011 Some lessons from the previous Global Malaria Eradication Program (1955–1969). PLoS Med 8 e1000412 doi:10.1371/journal.pmed.1000412

13. BockarieMJ

PedersenEM

WhiteGB

MichaelE

2009 Role of vector control in the global program to eliminate lymphatic filariasis. Ann Rev Entomol 54 469 487

14. LengelerC

2004 Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev CD000363

15. HaySI

SnowRW

2006 The malaria Atlas Project: Developing global maps of malaria risk. PLoS Med 3 e473 doi:10.1371/journal.pmed.0030473

16. HaySI

GuerraCA

GethingPW

PatilAP

TatemAJ

2009 A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med 6 e1000048 doi:10.1371/journal.pmed.100004

17. HaySI

SinkaME

OkaraRM

KabariaCW

MbithiPM

2010 Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Med 7 e1000209 doi:10.1371/journal.pmed.1000209

18. World Health Organization 2007 Anopheline species complexes in south and south-east Asia. SEARO Technical Publication No. 57 Geneva World Health Organization

19. WondjiCS

IrvingH

MorganJ

LoboNF

CollinsFH

2009 Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res 19 452 459

20. YadouletonAW

PadonouG

AsidiA

MoirouxN

Bio-BangannaS

2010 Insecticide resistance status of Anopheles gambiae in southern Benin. Malar J 9 83

21. KleinschmidtI

SchwabeC

ShivaM

SeguraJL

SimaV

2009 Combining indoor residual spraying and insecticide-treated bed net interventions. Am J Trop Med Hyg 81 519 524

22. GuelbeogoWM

SagnonN

GrushkoO

YameogoMA

BoccoliniD

2009 Seasonal distribution of Anopheles funestus chromosomal forms from Burkina Faso. Malar J 8 239 246

23. ThomasMB

ReadAF

2007 Can fungal biopesticides control malaria? Nat Rev Microbiol 5 377 383

24. FarenhorstM

MouatchoJC

KikankieCK

BrookeBD

HuntRH

2009 Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc Natl Acad Sci USA 106 17443 17447

25. PenillaRP

RodriguezAD

HemingwayJ

RarresJL

Arredondo-JimenezJI

1998 Resistance management strategies in malaria vector control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med Vet Ent 12 217 233

26. KhanZR

MidegaCAO

BruceTJA

HooperAM

PickettJA

2010 Exploiting phytochemicals for developing a “push-pull” crop protection strategy for cereal farmers in Africa. J Exp Botany 6 4185 4196

27. CareyAF

WangG

SuCY

ZwiebelLJ

CarlsonJR

2010 Odorant reception in the mosquito Anopheles gambiae. Nature 464 66 71

28. LawsonD

ArensburgerP

AtkinsonP

BesanskyNJ

BruggnerRV

2009 VectorBase: A data resource for invertebrate vector genomics. Nucleic Acids Res 37 D583 D587

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#