A Research Agenda for Malaria Eradication: Vaccines
Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of “vaccines that interrupt malaria transmission” (VIMT), which includes not only “classical” transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.
Vyšlo v časopise:
A Research Agenda for Malaria Eradication: Vaccines. PLoS Med 8(1): e32767. doi:10.1371/journal.pmed.1000398
Kategorie:
Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1000398
Souhrn
Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of “vaccines that interrupt malaria transmission” (VIMT), which includes not only “classical” transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.
Zdroje
1. HendersonDA
1987 Principles and lessons from the smallpox eradication programme. Bull World Health Organ 65 535 546
2. JohnJ
2009 Role of injectable and oral polio vaccines in polio eradication. Expert Rev Vaccines Jan 8 5 8
3. MossWJ
GriffinDE
2006 Global measles elimination. Nat Rev Microbiol 12 900 908
4. BremanJG
de QuadrosCA
DowdleWR
FoegeWH
HendersonDA
2011 The role of research in viral disease eradication and elimination programs: Lessons for malaria eradication. PLoS Med 8 e1000405 doi:10.1371/journal.pmed.1000405
5. RoperMH
VandelaerJH
GasseFL
2007 Maternal and neonatal tetanus. Lancet 370 1947 1959
6. AdegbolaRA
SeckaO
LahaiG
Lloyd-EvansN
NjieA
2005 Elimination of Haemophilus influenzae type b (Hib) disease from The Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: A prospective study. Lancet 366 144 150
7. Malaria Vaccine Technology Roadmap Final Report 2006 Available: http://www.malariavaccineroadmap.net
8. WHO 2000 Malaria transmission blocking vaccines: An ideal public good. Geneva: World Health Organization. Available: http://www.who.int/vaccine_research/feuille_1_4-1pdf
9. CarterR
2001 Transmission blocking malaria vaccines. Vaccine 19 2309 2314
10. RobertsDR
ManguinS
MoudhetJ
2000 DDT house spraying and re-emerging malaria. Lancet 356 330 332
11. O'MearaWP
BejonP
MwangiTW
OkiroEA
PeshuN
2008 Effect of a fall in malaria transmission on morbidity and mortality in Kilifi, Kenya. Lancet 372 1555 1562
12. CeesaySJ
Casals-PascualC
ErskineJ
AnyaSE
DuahNO
2008 Changes in malaria indices between 1999 and 2007 in The Gambia: A retrospective analysis. Lancet 372 1545 1554
13. MendisK
SinaBJ
MarchesiniP
CarterR
2001 The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 97 106
14. KocharDK
DasA
KocharSK
SaxenaV
SirohiP
2009 Severe Plasmodium vivax malaria: A report on serial cases from Bikaner in northwestern India. Am J Trop Med Hyg Feb 80 194 198
15. KocharDK
SaxenaV
SinghN
KocharSK
KumarSV
2005 Plasmodium vivax malaria. Emerg Infect Dis Jan 11 132 134
16. PriceRN
TjitraE
GuerraCA
YeungS
WhiteNJ
2007 Vivax malaria: Neglected and not benign. Am J Trop Med Hyg 77 79 87
17. PriceRN
DouglasNM
AnsteyNM
2009 New developments in Plasmodium vivax malaria: Severe disease and the rise of chloroquine resistance. Curr Opin Infect Dis 22 430 435
18. The malERA Consultative Group on Basic Science and Enabling Technologies 2011 A research agenda for malaria eradication: Basic science and enabling technologies. PLoS Med 8 e1000399 doi:10.1371/journal.pmed.1000399
19. LeeKS
Cox-SinghJ
BrookeG
MatusopA
SinghB
2009 Plasmodium knowlesi from archival blood films: Further evidence that human infections are widely distributed and not newly emergent in Malaysian Borneo. Int J Parasitol 9 1125 1128
20. Cox-SinghJ
DavisTM
LeeKS
ShamsulSS
MatusopA
2008 Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis 46 165 171
21. DixonMW
ThompsonJ
GardinerDL
TrenholmeKR
2008 Sex in Plasmodium: A sign of commitment. Trends Parasitol 24 168 175
22. The malERA Consultative Group on Drugs 2011 A research agenda for malaria eradication: Drugs. PLoS Med 8 e1000402 doi:10.1371/journal.pmed.1000402
23. MalkinEM
DurbinAP
DiemertDJ
SattabongkotJ
WuY
2005 Phase 1 vaccine trial of Pvs25H: A transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 23 3131 3138
24. WuY
EllisRD
ShafferD
FontesE
MalkinEM
2008 Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS One 3 e2636 doi:10.1371/journal.pone.0002636
25. OutchkourovNS
RoeffenW
KaanA
JansenJ
LutyA
2008 Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice. Proc Natl Acad Sci U S A 105 4301 4305
26. ChowdhuryDR
AngovE
KariukiT
KumarN
2009 A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli. PLoS One 4 e6352 doi:10.1371/journal.pone.0006352
27. AlonsoPL
SacarlalJ
AponteJJ
LeachA
MaceteE
2004 Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: Randomised controlled trial. Lancet 364 1411 1420
28. AlonsoPL
SacarlalJ
AponteJJ
LeachA
MaceteE
2005 Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: Single-blind extended follow-up of a randomised controlled trial. Lancet 366 2012 2018
29. HoffmanSL
BillingsleyPF
JamesE
RichmanA
LoyevskyM
2010 Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum Vaccin 6 97 106
30. PinderM
MoorthyVS
AkanmoriBD
GentonB
BrownGV
2010 Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Vaccine 6 97 106
31. DinglasanRR
KalumeDE
KanzokSM
GhoshAK
MuratovaO
2007 Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen. Proc Natl Acad Sci U S A 104 13461 13466
32. The malERA Consultative Group on Vector Control 2011 A research agenda for malaria eradication: Vector control. PLoS 8 e1000401 doi:10.1371/journal.pmed.1000401
33. MotaMM
HafallaJC
RodriguezA
2002 Migration through host cells activates Plasmodium sporozoites for infection. Nat Med 8 1318 1322
34. SultanAA
ThathyV
FrevertU
RobsonKJ
CrisantiA
1997 TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 90 511 522
35. CeramiC
FrevertU
SinnisP
TakacsB
ClavijoP
1992 The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70 1021 1033
36. TewariR
SpaccapeloR
BistoniF
HolderAA
Crisanti A. 2002 Function of region I and II adhesive motifs of Plasmodium falciparum circumsporozoite protein in sporozoite motility and infectivity. J Biol Chem 277 47613 47618
37. WengelnikK
SpaccapeloR
NaitzaS
RobsonKJ
JanseCJ
1999 The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands. EMBO J 18 5195 5204
38. NarumDL
HaynesJD
FuhrmannS
MochK
LiangH
2000 Antibodies against the Plasmodium falciparum receptor binding domain of EBA-175 block invasion pathways that do not involve sialic acids. Infect Immun 68 1964 1966
39. PandeyKC
SinghS
PattnaikP
PillaiCR
PillaiU
2002 Bacterially expressed and refolded receptor binding domain of Plasmodium falciparum EBA-175 elicits invasion inhibitory antibodies. Mol Biochem Parasitol 123 23 33
40. PattnaikP
ShakriAR
SinghS
GoelS
MukherjeeP
2007 Immunogenicity of a recombinant malaria vaccine based on receptor binding domain of Plasmodium falciparum EBA-175. Vaccine 25 806 813
41. SimBK
ChitnisCE
WasniowskaK
HadleyTJ
MillerLH
1994 Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264 1941 1944
42. GrimbergBT
UdomsangpetchR
XainliJ
McHenryA
PanichakulT
2007 Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed against the Duffy binding protein. PLoS Med 4 e337 doi:10.1371/journal.pmed.0040337
43. GaoX
YeoKP
AwSS
KussC
IyerJK
2008 Antibodies targeting the PfRH1 binding domain inhibit invasion of Plasmodium falciparum merozoites. PLoS Pathog 4 e1000104 doi:10.1371/journal.ppat.1000104
44. DraperSJ
MooreAC
GoodmanAL
LongCA
HolderAA
2008 Effective induction of high-titer antibodies by viral vector vaccines. Nat Med 14 819 821
45. TakalaSL
PloweCV
2009 Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming ‘vaccine resistant malaria’. Parasite Immunol 31 560 573
46. The malERA Consultative Group on Cross Cutting Issues for Eradication 2011 A research agenda for malaria eradication: Cross cutting issues for eradication. PLoS 8 e1000404 doi:10.1371/journal.pmed.1000404
47. The malERA Consultative Group on Basic Monitoring, Evaluation, and Surveillance 2011 A research agenda for malaria eradication: Monitoring, evaluation, and surveillance. PLoS 8 e1000400 doi:10.1371/journal.pmed.1000400
48. BousemaJT
SchneiderP
GouagnaLC
DrakeleyCJ
TostmannA
2006 Moderate effect of artemisinin-based combination therapy on transmission of Plasmodium falciparum. J Infect Dis 193 1151 1159
49. van der KolkM
De VlasSJ
SaulA
van de Vegte-BolmerM
ElingWM
2005 Evaluation of the standard membrane feeding assay (SMFA) for the determination of malaria transmission-reducing activity using empirical data. Parasitology 130 13 22
50. WHO 1997 Guidelines for the evaluation of Plasmodium falciparum vaccines in populations exposed to natural infection. Geneva WHO
51. PennyMA
MaireN
StuderA
SchapiraA
SmithTA
2008 What should vaccine developers ask? Simulation of the effectiveness of malaria vaccines. PLoS One 3 e3193 doi:10.1371/journal.pone.0003193
52. The malERA Consultative Group on Modeling 2011 A research agenda for malaria eradication: Modeling. PLoS 8 e1000403 doi:10.1371/journal.pmed.1000403
53. The malERA Consultative Group on Diagnoses and Diagnostics 2011 A research agenda for malaria eradication: Diagnoses and diagnostics. PLoS 8 e1000396 doi:10.1371/journal.pmed.1000396
54. World Health Organization 2000 Making use of vaccine vial monitors. Flexible vaccine management for polio. Geneva: World Health Organization Available: www.who.int/vaccines-documents/DocsPDF00/www516.pdf
55. World Health Organization 2006 Procedures for assessing the acceptability, in principle, of vaccines for purchase by United Nations agencies. Geneva: World Health Organization Available: www.who.int/vaccines-documents/DocsPDF06/812.pdf
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2011 Číslo 1
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Metamizol v liečbe pooperačnej bolesti u detí do 6 rokov veku
- Co dělat při intoleranci statinů?
Najčítanejšie v tomto čísle
- A Research Agenda for Malaria Eradication: Cross-Cutting Issues for Eradication
- The Impact of eHealth on the Quality and Safety of Health Care: A Systematic Overview
- Estimates of Pandemic Influenza Vaccine Effectiveness in Europe, 2009–2010: Results of Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) Multicentre Case-Control Study
- Using the Delphi Technique to Determine Which Outcomes to Measure in Clinical Trials: Recommendations for the Future Based on a Systematic Review of Existing Studies