No Treatment versus 24 or 60 Weeks of Antiretroviral Treatment during Primary HIV Infection: The Randomized Primo-SHM Trial
Background:
The objective of this study was to assess the benefit of temporary combination antiretroviral therapy (cART) during primary HIV infection (PHI).
Methods and Findings:
Adult patients with laboratory evidence of PHI were recruited in 13 HIV treatment centers in the Netherlands and randomly assigned to receive no treatment or 24 or 60 wk of cART (allocation in a 1∶1∶1 ratio); if therapy was clinically indicated, participants were randomized over the two treatment arms (allocation in a 1∶1 ratio). Primary end points were (1) viral set point, defined as the plasma viral load 36 wk after randomization in the no treatment arm and 36 wk after treatment interruption in the treatment arms, and (2) the total time that patients were off therapy, defined as the time between randomization and start of cART in the no treatment arm, and the time between treatment interruption and restart of cART in the treatment arms. cART was (re)started in case of confirmed CD4 cell count <350 cells/mm3 or symptomatic HIV disease. In total, 173 participants were randomized. The modified intention-to-treat analysis comprised 168 patients: 115 were randomized over the three study arms, and 53 randomized over the two treatment arms. Of the 115 patients randomized over the three study arms, mean viral set point was 4.8 (standard deviation 0.6) log10 copies/ml in the no treatment arm, and 4.0 (1.0) and 4.3 (0.9) log10 copies/ml in the 24- and 60-wk treatment arms (between groups: p<0.001). The median total time off therapy in the no treatment arm was 0.7 (95% CI 0.0–1.8) y compared to 3.0 (1.9–4.2) and 1.8 (0.5–3.0) y in the 24- and 60-wk treatment arms (log rank test, p<0.001). In the adjusted Cox analysis, both 24 wk (hazard ratio 0.42 [95% CI 0.25–0.73]) and 60 wk of early treatment (hazard ratio 0.55 [0.32–0.95]) were associated with time to (re)start of cART.
Conclusions:
In this trial, temporary cART during PHI was found to transiently lower the viral set point and defer the restart of cART during chronic HIV infection.
Trial registration:
Current Controlled Trials ISRCTN59497461
: Please see later in the article for the Editors' Summary
Vyšlo v časopise:
No Treatment versus 24 or 60 Weeks of Antiretroviral Treatment during Primary HIV Infection: The Randomized Primo-SHM Trial. PLoS Med 9(3): e32767. doi:10.1371/journal.pmed.1001196
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001196
Souhrn
Background:
The objective of this study was to assess the benefit of temporary combination antiretroviral therapy (cART) during primary HIV infection (PHI).
Methods and Findings:
Adult patients with laboratory evidence of PHI were recruited in 13 HIV treatment centers in the Netherlands and randomly assigned to receive no treatment or 24 or 60 wk of cART (allocation in a 1∶1∶1 ratio); if therapy was clinically indicated, participants were randomized over the two treatment arms (allocation in a 1∶1 ratio). Primary end points were (1) viral set point, defined as the plasma viral load 36 wk after randomization in the no treatment arm and 36 wk after treatment interruption in the treatment arms, and (2) the total time that patients were off therapy, defined as the time between randomization and start of cART in the no treatment arm, and the time between treatment interruption and restart of cART in the treatment arms. cART was (re)started in case of confirmed CD4 cell count <350 cells/mm3 or symptomatic HIV disease. In total, 173 participants were randomized. The modified intention-to-treat analysis comprised 168 patients: 115 were randomized over the three study arms, and 53 randomized over the two treatment arms. Of the 115 patients randomized over the three study arms, mean viral set point was 4.8 (standard deviation 0.6) log10 copies/ml in the no treatment arm, and 4.0 (1.0) and 4.3 (0.9) log10 copies/ml in the 24- and 60-wk treatment arms (between groups: p<0.001). The median total time off therapy in the no treatment arm was 0.7 (95% CI 0.0–1.8) y compared to 3.0 (1.9–4.2) and 1.8 (0.5–3.0) y in the 24- and 60-wk treatment arms (log rank test, p<0.001). In the adjusted Cox analysis, both 24 wk (hazard ratio 0.42 [95% CI 0.25–0.73]) and 60 wk of early treatment (hazard ratio 0.55 [0.32–0.95]) were associated with time to (re)start of cART.
Conclusions:
In this trial, temporary cART during PHI was found to transiently lower the viral set point and defer the restart of cART during chronic HIV infection.
Trial registration:
Current Controlled Trials ISRCTN59497461
: Please see later in the article for the Editors' Summary
Zdroje
1. BellSKLittleSJRosenbergES 2010 Clinical management of acute HIV infection: best practice remains unknown. J Infect Dis 202 Suppl 2 S278 S288
2. CohenMSShawGMMcMichaelAJHaynesBF 2011 Acute HIV-1 infection. N Engl J Med 364 1943 1954
3. HechtFMWangLCollierALittleSMarkowitzM 2006 A multicenter observational study of the potential benefits of initiating combination antiretroviral therapy during acute HIV infection. J Infect Dis 194 725 733
4. GirardPMSchneiderVDeheeAMariotPJacometC 2001 Treatment interruption after one year of triple nucleoside analogue therapy for primary HIV infection. AIDS 15 275 277
5. SteingroverRGarciaEFvan ValkengoedIGBekkerVBezemerD 2010 Transient lowering of the viral set point after temporary antiretroviral therapy of primary HIV type 1 infection. AIDS Res Hum Retroviruses 26 379 387
6. FidlerSFoxJTouloumiGPantazisNPorterK 2007 Slower CD4 cell decline following cessation of a 3 month course of HAART in primary HIV infection: findings from an observational cohort. AIDS 21 1283 1291
7. ZaundersJJCunninghamPHKelleherADKaufmannGRJaramilloAB 1999 Potent antiretroviral therapy of primary human immunodeficiency virus type 1 (HIV-1) infection: partial normalization of T lymphocyte subsets and limited reduction of HIV-1 DNA despite clearance of plasma viremia. J Infect Dis 180 320 329
8. FidlerSOxeniusABradyMClarkeJCropleyI 2002 Virological and immunological effects of short-course antiretroviral therapy in primary HIV infection. AIDS 16 2049 2054
9. RosenbergESAltfeldMPoonSHPhillipsMNWilkesBM 2000 Immune control of HIV-1 after early treatment of acute infection. Nature 407 523 526
10. OxeniusAPriceDAEasterbrookPJO'CallaghanCAKelleherAD 2000 Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. Proc Natl Acad Sci U S A 97 3382 3387
11. CelleraiCLittleSJLoesSK 2008 Treatment of acute HIV-1 infection: are we getting there? Curr Opin HIV AIDS 3 67 74
12. PantazisNTouloumiGVanhemsPGillJBucherHC 2008 The effect of antiretroviral treatment of different durations in primary HIV infection. AIDS 22 2441 2450
13. StreeckHJessenHAlterGTeigenNWaringMT 2006 Immunological and virological impact of highly active antiretroviral therapy initiated during acute HIV-1 infection. J Infect Dis 194 734 739
14. DesquilbetLGoujardCRouziouxCSinetMDeveauC 2004 Does transient HAART during primary HIV-1 infection lower the virological set-point? AIDS 18 2361 2369
15. MarkowitzMJinXHurleyASimonVRamratnamB 2002 Discontinuation of antiretroviral therapy commenced early during the course of human immunodeficiency virus type 1 infection, with or without adjunctive vaccination. J Infect Dis 186 634 643
16. KaufmannDELichterfeldMAltfeldMAddoMMJohnstonMN 2004 Limited durability of viral control following treated acute HIV infection. PLoS Med 1 e36 doi:10.1371/journal.pmed.0010036
17. SengRGoujardCDesquilbetLSinetMRouziouxC 2008 Rapid CD4+ cell decrease after transient cART initiated during primary HIV infection (ANRS PRIMO and SEROCO cohorts). J Acquir Immune Defic Syndr 49 251 258
18. Kinloch-De LoesSHirschelBJHoenBCooperDATindallB 1995 A controlled trial of zidovudine in primary human immunodeficiency virus infection. N Engl J Med 333 408 413
19. FidlerS Spartac Trial Investigators 2011 The effect of short-course antiretroviral therapy in primary HIV infection: final results from an international randomised controlled trial; SPARTAC [abstract]. Abstract WELBX06. 6th IAS Conference on HIV Pathogenesis, Treatment and Prevention; 17–20 July 2011; Rome, Italy
20. HoganCMDeGruttolaVSunXFiscusSADel RioC 2012 The setpoint study (ACTG A5217): effect of immediate versus deferred antiretroviral therapy on virologic setpoint in recently HIV-1 infected individuals. J Infect Dis 205 87 96
21. FiebigEWWrightDJRawalBDGarrettPESchumacherRT 2003 Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS 17 1871 1879
22. SchuttenMPetersDBackNKBeldMBeuselinckK 2007 Multicenter evaluation of the new Abbott RealTime assays for quantitative detection of human immunodeficiency virus type 1 and hepatitis C virus RNA. J Clin Microbiol 45 1712 1717
23. BennettDECamachoRJOteleaDKuritzkesDRFleuryH 2009 Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLoS ONE 4 e4724 doi:10.1371/journal.pone.0004724
24. GiffordRJLiuTFRheeSYKiuchiMHueS 2009 The calibrated population resistance tool: standardized genotypic estimation of transmitted HIV-1 drug resistance. Bioinformatics 25 1197 1198
25. KootMVosAHKeetRPde GoedeREDercksenMW 1992 HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS 6 49 54
26. Centers for Disease Control and Prevention 1993 Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Morb Mortal Wkly Rep 41 1 19
27. KitahataMMGangeSJAbrahamAGMerrimanBSaagMS 2009 Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med 360 1815 1826
28. SterneJAMayMCostagliolaDde WolfFPhillipsAN 2009 Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. Lancet 373 1352 1363
29. RosenbaumPRRubinDB 1983 The central role of the propensity score in observational studies for causal effects. Biometrika 70 41 55
30. SmithDEWalkerBDCooperDARosenbergESKaldorJM 2004 Is antiretroviral treatment of primary HIV infection clinically justified on the basis of current evidence? AIDS 18 709 718
31. KoeglCWolfEHanhoffNJessenHScheweK 2009 Treatment during primary HIV infection does not lower viral set point but improves CD4 lymphocytes in an observational cohort. Eur J Med Res 14 277 283
32. CASCADE Collaboration 2000 Changes in the uptake of antiretroviral therapy and survival in people with known duration of HIV infection in Europe: results from CASCADE. HIV Med 1 224 231
33. GianellaSvon WylVFischerMNiederoestBBattegayM 2011 Effect of early antiretroviral therapy during primary HIV-1 infection on cell-associated HIV-1 DNA and plasma HIV-1 RNA. Antivir Ther 16 535 545
34. GuadalupeMSankaranSGeorgeMDReayEVerhoevenD 2006 Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J Virol 80 8236 8247
35. ChunTWJustementJSMurrayDHallahanCWMaenzaJ 2010 Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: implications for eradication. AIDS 24 2803 2808
36. SchmidAGianellaSvon WylVMetznerKJScherrerAU 2010 Profound depletion of HIV-1 transcription in patients initiating antiretroviral therapy during acute infection. PLoS ONE 5 e13310 doi:10.1371/journal.pone.0013310
37. HessCAltfeldMThomasSYAddoMMRosenbergES 2004 HIV-1 specific CD8+ T cells with an effector phenotype and control of viral replication. Lancet 363 863 866
38. MoirSBucknerCMHoJWangWChenJ 2010 B cells in early and chronic HIV infection: evidence for preservation of immune function associated with early initiation of antiretroviral therapy. Blood 116 5571 5579
39. SteingroverRSchellensIVerbonABrinkmanKZwindermanA 2008 Temporary antiretroviral therapy during primary HIV-1 infection lowers the viral set-point: the prospective randomized Primo-SHM study [abstract]. Abstract 698b. 15th Conference on Retroviruses and Opportunistic Infections; 3–6 February 2008; Boston, Massachusetts, United States
40. CornelissenMPasternakAOGrijsenMLZorgdragerFBakkerM 2012 HIV-1 dual infection is associated with faster CD4+ T cell decline in a cohort of men with primary HIV infection. Clin Infect Dis 54 539 547
41. El-SadrWMLundgrenJDNeatonJDGordinFAbramsD 2006 CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med 355 2283 2296
42. FidlerSFoxJPorterKWeberJ 2008 Primary HIV infection: to treat or not to treat? Curr Opin Infect Dis 21 4 10
43. HamlynEJonesVPorterKFidlerS 2010 Antiretroviral treatment of primary HIV infection to reduce onward transmission. Curr Opin HIV AIDS 5 283 290
44. GranichRMGilksCFDyeCDe CockKMWilliamsBG 2009 Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 373 48 57
45. MontanerJSHoggRWoodEKerrTTyndallM 2006 The case for expanding access to highly active antiretroviral therapy to curb the growth of the HIV epidemic. Lancet 368 531 536
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2012 Číslo 3
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Metamizol v liečbe pooperačnej bolesti u detí do 6 rokov veku
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
Najčítanejšie v tomto čísle
- Guidance for Evidence-Informed Policies about Health Systems: Assessing How Much Confidence to Place in the Research Evidence
- Uterine Rupture by Intended Mode of Delivery in the UK: A National Case-Control Study
- Guidance for Evidence-Informed Policies about Health Systems: Linking Guidance Development to Policy Development
- Improving Ethical Review of Research Involving Incentives for Health Promotion