#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Fine Particulate Air Pollution and the Progression of Carotid Intima-Medial Thickness: A Prospective Cohort Study from the Multi-Ethnic Study of Atherosclerosis and Air Pollution


Background:
Fine particulate matter (PM2.5) has been linked to cardiovascular disease, possibly via accelerated atherosclerosis. We examined associations between the progression of the intima-medial thickness (IMT) of the common carotid artery, as an indicator of atherosclerosis, and long-term PM2.5 concentrations in participants from the Multi-Ethnic Study of Atherosclerosis (MESA).

Methods and Results:
MESA, a prospective cohort study, enrolled 6,814 participants at the baseline exam (2000–2002), with 5,660 (83%) of those participants completing two ultrasound examinations between 2000 and 2005 (mean follow-up: 2.5 years). PM2.5 was estimated over the year preceding baseline and between ultrasounds using a spatio-temporal model. Cross-sectional and longitudinal associations were examined using mixed models adjusted for confounders including age, sex, race/ethnicity, smoking, and socio-economic indicators. Among 5,362 participants (5% of participants had missing data) with a mean annual progression of 14 µm/y, 2.5 µg/m3 higher levels of residential PM2.5 during the follow-up period were associated with 5.0 µm/y (95% CI 2.6 to 7.4 µm/y) greater IMT progressions among persons in the same metropolitan area. Although significant associations were not found with IMT progression without adjustment for metropolitan area (0.4 µm/y [95% CI −0.4 to 1.2 µm/y] per 2.5 µg/m3), all of the six areas showed positive associations. Greater reductions in PM2.5 over follow-up for a fixed baseline PM2.5 were also associated with slowed IMT progression (−2.8 µm/y [95% CI −1.6 to −3.9 µm/y] per 1 µg/m3 reduction). Study limitations include the use of a surrogate measure of atherosclerosis, some loss to follow-up, and the lack of estimates for air pollution concentrations prior to 1999.

Conclusions:
This early analysis from MESA suggests that higher long-term PM2.5 concentrations are associated with increased IMT progression and that greater reductions in PM2.5 are related to slower IMT progression. These findings, even over a relatively short follow-up period, add to the limited literature on air pollution and the progression of atherosclerotic processes in humans. If confirmed by future analyses of the full 10 years of follow-up in this cohort, these findings will help to explain associations between long-term PM2.5 concentrations and clinical cardiovascular events.

Please see later in the article for the Editors' Summary


Vyšlo v časopise: Fine Particulate Air Pollution and the Progression of Carotid Intima-Medial Thickness: A Prospective Cohort Study from the Multi-Ethnic Study of Atherosclerosis and Air Pollution. PLoS Med 10(4): e32767. doi:10.1371/journal.pmed.1001430
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1001430

Souhrn

Background:
Fine particulate matter (PM2.5) has been linked to cardiovascular disease, possibly via accelerated atherosclerosis. We examined associations between the progression of the intima-medial thickness (IMT) of the common carotid artery, as an indicator of atherosclerosis, and long-term PM2.5 concentrations in participants from the Multi-Ethnic Study of Atherosclerosis (MESA).

Methods and Results:
MESA, a prospective cohort study, enrolled 6,814 participants at the baseline exam (2000–2002), with 5,660 (83%) of those participants completing two ultrasound examinations between 2000 and 2005 (mean follow-up: 2.5 years). PM2.5 was estimated over the year preceding baseline and between ultrasounds using a spatio-temporal model. Cross-sectional and longitudinal associations were examined using mixed models adjusted for confounders including age, sex, race/ethnicity, smoking, and socio-economic indicators. Among 5,362 participants (5% of participants had missing data) with a mean annual progression of 14 µm/y, 2.5 µg/m3 higher levels of residential PM2.5 during the follow-up period were associated with 5.0 µm/y (95% CI 2.6 to 7.4 µm/y) greater IMT progressions among persons in the same metropolitan area. Although significant associations were not found with IMT progression without adjustment for metropolitan area (0.4 µm/y [95% CI −0.4 to 1.2 µm/y] per 2.5 µg/m3), all of the six areas showed positive associations. Greater reductions in PM2.5 over follow-up for a fixed baseline PM2.5 were also associated with slowed IMT progression (−2.8 µm/y [95% CI −1.6 to −3.9 µm/y] per 1 µg/m3 reduction). Study limitations include the use of a surrogate measure of atherosclerosis, some loss to follow-up, and the lack of estimates for air pollution concentrations prior to 1999.

Conclusions:
This early analysis from MESA suggests that higher long-term PM2.5 concentrations are associated with increased IMT progression and that greater reductions in PM2.5 are related to slower IMT progression. These findings, even over a relatively short follow-up period, add to the limited literature on air pollution and the progression of atherosclerotic processes in humans. If confirmed by future analyses of the full 10 years of follow-up in this cohort, these findings will help to explain associations between long-term PM2.5 concentrations and clinical cardiovascular events.

Please see later in the article for the Editors' Summary


Zdroje

1. BrookRD, RajagopalanS, PopeCA, BrookJR, BhatnagarA, et al. (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121: 2331–2378.

2. SuwaT, HoggJC, QuinlanKB, OhgamiA, VincentR, et al. (2002) Particulate air pollution induces progression of atherosclerosis. J Am Coll Cardiol 39: 935–942.

3. AraujoJA, NelAE (2009) Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Particle and Fibre Toxicology 6.

4. SunQH, WangAX, JinXM, NatanzonA, DuquaineD, et al. (2005) Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. Jama-Journal of the American Medical Association 294: 3003–3010.

5. NiwaY, HiuraY, MurayamaT, YokodeM, IwaiN (2007) Nano-sized carbon black exposure exacerbates atherosclerosis in LDL-receptor knockout mice. Circ J 71: 1157–1161.

6. ChenLC, QuanCL, HwangJS, JinXM, LiQA, et al. (2010) Atherosclerosis lesion progression during inhalation exposure to environmental tobacco smoke: a comparison to concentrated ambient air fine particles exposure. Inhal Toxicol 22: 449–459.

7. RouxAVD, AuchinclossAH, FranklinTG, RaghunathanT, BarrRG, et al. (2008) Long-term exposure to ambient particulate matter and prevalence of subclinical atherosclerosis in the multi-ethnic study of atherosclerosis. Am J Epidemiol 167: 667–675.

8. KunzliN, JerrettM, MackWJ, BeckermanB, LaBreeL, et al. (2005) Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 113: 201–206.

9. BauerM, MoebusS, MöhlenkampS, DraganoN, NonnemacherM, et al. (2010) Urban particulate matter air pollution is associated with subclinical atherosclerosis: results from the HNR (Heinz Nixdorf Recall) study. J Am Coll Cardiol 56: 1803–1808.

10. LentersV, UiterwaalCS, BeelenR, BotsML, FischerP, et al. (2010) Long-term exposure to air pollution and vascular damage in young adults. Epidemiology 21: 512–520.

11. HoffmannB, MoebusS, KrogerK, StangA, MohlenkampS, et al. (2009) Residential exposure to urban air pollution, ankle-brachial index, and peripheral arterial disease. Epidemiology 20: 280–288.

12. HoffmannB, MoebusS, MohlenkampS, StangA, LehmannN, et al. (2007) Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 116: 489–496.

13. AllenRW, CriquiMH, RouxAVD, AllisonM, SheaS, et al. (2009) Fine particulate matter air pollution, proximity to traffic, and aortic atherosclerosis. Epidemiology 20: 254–264.

14. KunzliN, JerrettM, Garcia-EstebanR, BasaganaX, BeckermannB, et al. (2010) Ambient air pollution and the progression of atherosclerosis in adults. PLOS One 5: e9096 doi: 10.1371/journal.pone.0009096.

15. KaufmanJD, AdarSD, AllenRW, BarrRG, BudoffMJ, et al. (2012) Prospective study of particulate air pollution exposures, subclinical atherosclerosis, and clinical cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Am J Epidemiol 176: 825–837.

16. BildDE, BluemkeDA, BurkeGL, DetranoR, RouxAVD, et al. (2002) Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156: 871–881.

17. MillerMR, HankinsonJ, BrusascoV, BurgosF, CasaburiR, et al. (2005) Standardisation of spirometry. Eur Respir J 26: 319–338.

18. Sampson PD, Szpiro AA, Sheppard L, Lindström J, Kaufman JD (2009) Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data. UW Biostatistics Working Paper Series Working Paper 353. Available: http://biostats.bepress.com/uwbiostat/paper353

19. SzpiroA, SampsonP, SheppardL, LumleyT, AdarS, et al. (2010) Predicting intra-urban variations in air pollution with complex spatio-temporal dependencies. Environmetrics 21: 606–631.

20. CohenMA, AdarSD, AllenRW, AvolE, CurlCL, et al. (2009) Approach to estimating participant pollutant exposures in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Environ Sci Technol 43: 4687–4693.

21. Singer J, Willett J, editors(2003) Applied longitudinal data analysis. 1st edition. New York: Oxford University Press.

22. RCoreTeam (2012) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computer.

23. HajatA, Diex-RouxA, AdarS, AuchinclossA, LovasiG, et al. (2013) The burden of air pollution on poor individuals and neighborhoods: evidence from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health Perspect In press.

24. GenuthS, AlbertiK, BennettP, BuseJ, DeFronzoR, et al. (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26: 3160–3167.

25. LadenF, SchwartzJ, SpeizerFE, DockeryDW (2006) Reduction in fine particulate air pollution and mortality - Extended follow-up of the Harvard six cities study. Am J Respir Crit Care Med 173: 667–672.

26. PopeCA, EzzatiM, DockeryDW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360: 376–386.

27. CorreiaAW, PopeCAI, DockeryDW, WangY, EzzatiM, et al. (2013) Effect of air pollution control on life expectancy in the United States: an analysis of 545 U.S. counties for the period from 2000 to 2007. Epidemiology 24: 23–31.

28. LimSS, VosT, FlaxmanAD, DanaeiG, ShibuyaK, et al. (2013) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2224–2260.

29. USEPA (2010) Summary of expert opinions on the existence of a threshold in the concentration-response function of PM2.5-related mortality. Office of Air Quality Planning and Standards HaEID, editor. USEPA: Research Triangle Park (North Carolina).

30. DockeryDW, PopeCA3rd, XuX, SpenglerJD, WareJH, et al. (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329: 1753–1759.

31. PopeCA, BurnettRT, ThurstonGD, ThunMJ, CalleEE, et al. (2004) Cardiovascular mortality and long-term exposure to particulate air pollution - epidemiological evidence of general pathophysiological pathways of disease. Circulation 109: 71–77.

32. MillerKA, SiscovickDS, SheppardL, ShepherdK, SullivanJH, et al. (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 356: 447–458.

33. KünzliN, PerezL, von KlotS, BaldassarreD, BauerM, et al. (2011) Investigating air pollution and atherosclerosis in humans: concepts and outlook. Prog Cardiovasc Dis 53: 334–343.

34. SunQH, YuePB, KirkRI, WangAX, MoattiD, et al. (2008) Ambient air particulate matter exposure and tissue factor expression in atherosclerosis. Inhal Toxicol 20: 127–137.

35. AllenR, DaviesH, CohenMA, MallachG, KaufmanJD, et al. (2009) The spatial relationship between traffic-generated air pollution and noise in 2 US cities. Environ Res 109: 334–342.

36. AllenRW, AdarSD (2011) Are both air pollution and noise driving adverse cardiovascular health effects from motor vehicles? Environ Res 111: 184–185.

37. LiviakisL, PogueB, ParamsothyP, BourneA, GillEA (2010) Carotid intima-media thickness for the practicing lipidologist. J Clin Lipidol 4: 24–35.

38. SarnatJA, KoutrakisP, SuhHH (2000) Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore, MD. J Air Waste Manag Assoc 50: 1184–1198.

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2013 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#