Life Expectancies of South African Adults Starting Antiretroviral Treatment: Collaborative Analysis of Cohort Studies
Background:
Few estimates exist of the life expectancy of HIV-positive adults receiving antiretroviral treatment (ART) in low- and middle-income countries. We aimed to estimate the life expectancy of patients starting ART in South Africa and compare it with that of HIV-negative adults.
Methods and Findings:
Data were collected from six South African ART cohorts. Analysis was restricted to 37,740 HIV-positive adults starting ART for the first time. Estimates of mortality were obtained by linking patient records to the national population register. Relative survival models were used to estimate the excess mortality attributable to HIV by age, for different baseline CD4 categories and different durations. Non-HIV mortality was estimated using a South African demographic model. The average life expectancy of men starting ART varied between 27.6 y (95% CI: 25.2–30.2) at age 20 y and 10.1 y (95% CI: 9.3–10.8) at age 60 y, while estimates for women at the same ages were substantially higher, at 36.8 y (95% CI: 34.0–39.7) and 14.4 y (95% CI: 13.3–15.3), respectively. The life expectancy of a 20-y-old woman was 43.1 y (95% CI: 40.1–46.0) if her baseline CD4 count was ≥200 cells/µl, compared to 29.5 y (95% CI: 26.2–33.0) if her baseline CD4 count was <50 cells/µl. Life expectancies of patients with baseline CD4 counts ≥200 cells/µl were between 70% and 86% of those in HIV-negative adults of the same age and sex, and life expectancies were increased by 15%–20% in patients who had survived 2 y after starting ART. However, the analysis was limited by a lack of mortality data at longer durations.
Conclusions:
South African HIV-positive adults can have a near-normal life expectancy, provided that they start ART before their CD4 count drops below 200 cells/µl. These findings demonstrate that the near-normal life expectancies of HIV-positive individuals receiving ART in high-income countries can apply to low- and middle-income countries as well.
Please see later in the article for the Editors' Summary
Vyšlo v časopise:
Life Expectancies of South African Adults Starting Antiretroviral Treatment: Collaborative Analysis of Cohort Studies. PLoS Med 10(4): e32767. doi:10.1371/journal.pmed.1001418
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001418
Souhrn
Background:
Few estimates exist of the life expectancy of HIV-positive adults receiving antiretroviral treatment (ART) in low- and middle-income countries. We aimed to estimate the life expectancy of patients starting ART in South Africa and compare it with that of HIV-negative adults.
Methods and Findings:
Data were collected from six South African ART cohorts. Analysis was restricted to 37,740 HIV-positive adults starting ART for the first time. Estimates of mortality were obtained by linking patient records to the national population register. Relative survival models were used to estimate the excess mortality attributable to HIV by age, for different baseline CD4 categories and different durations. Non-HIV mortality was estimated using a South African demographic model. The average life expectancy of men starting ART varied between 27.6 y (95% CI: 25.2–30.2) at age 20 y and 10.1 y (95% CI: 9.3–10.8) at age 60 y, while estimates for women at the same ages were substantially higher, at 36.8 y (95% CI: 34.0–39.7) and 14.4 y (95% CI: 13.3–15.3), respectively. The life expectancy of a 20-y-old woman was 43.1 y (95% CI: 40.1–46.0) if her baseline CD4 count was ≥200 cells/µl, compared to 29.5 y (95% CI: 26.2–33.0) if her baseline CD4 count was <50 cells/µl. Life expectancies of patients with baseline CD4 counts ≥200 cells/µl were between 70% and 86% of those in HIV-negative adults of the same age and sex, and life expectancies were increased by 15%–20% in patients who had survived 2 y after starting ART. However, the analysis was limited by a lack of mortality data at longer durations.
Conclusions:
South African HIV-positive adults can have a near-normal life expectancy, provided that they start ART before their CD4 count drops below 200 cells/µl. These findings demonstrate that the near-normal life expectancies of HIV-positive individuals receiving ART in high-income countries can apply to low- and middle-income countries as well.
Please see later in the article for the Editors' Summary
Zdroje
1. HallettTB, GregsonS, DubeS, MapfekaES, MugurungiO, et al. (2011) Estimating the resources required in the roll-out of universal access to antiretroviral treatment in Zimbabwe. Sex Transm Infect 87: 621–628.
2. ReschS, KorenrompE, StoverJ, BlakleyM, KrubinerC, et al. (2011) Economic returns to investment in AIDS treatment in low and middle income countries. PLoS ONE 6: e25310 doi:10.1371/journal.pone.0025310.
3. SchackmanBR, GeboKA, WalenskyRP, LosinaE, MuccioT, et al. (2006) The lifetime cost of current human immunodeficiency virus care in the United States. Med Care 44: 990–997.
4. MayM, GompelsM, DelpechV, PorterK, PostF, et al. (2011) Impact of late diagnosis and treatment on life expectancy in people with HIV-1: UK Collaborative HIV Cohort (UK CHIC) Study. BMJ 343: d6016.
5. McDavid HarrisonK, SongR, ZhangX (2010) Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states, United States. J Acquir Immun Defic Syndr 53: 124–130.
6. HoggR, LimaV, SterneJAC, GrabarS, BattegayM, et al. (2008) Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 372: 293–299.
7. van SighemAI, GrasLA, ReissP, BrinkmanK, de WolfF (2010) Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals. AIDS 24: 1527–1535.
8. LimaVD, HoggRS, HarriganPR, MooreD, YipB, et al. (2007) Continued improvement in survival among HIV-infected individuals with newer forms of highly active antiretroviral therapy. AIDS 21: 685–692.
9. Lloyd-SmithE, BrodkinE, WoodE, KerrT, TyndallMW, et al. (2006) Impact of HAART and injection drug use on life expectancy of two HIV-positive cohorts in British Columbia. AIDS 20: 445–450.
10. FangCT, ChangYY, HsuHM, TwuSJ, ChenKT, et al. (2007) Life expectancy of patients with newly-diagnosed HIV infection in the era of highly active antiretroviral therapy. Q J Med 100: 97–105.
11. KeiserO, TafféP, ZwahlenM, BattegayM, BernasconiE, et al. (2004) All cause mortality in the Swiss HIV Cohort Study from 1990 to 2001 in comparison with the Swiss population. AIDS 18: 1835–1843.
12. LohseN, HansenAB, PedersenG, KronborgG, GerstoftJ, et al. (2007) Survival of persons with and without HIV infection in Denmark, 1995–2005. Ann Intern Med 146: 87–95.
13. WadaN, JacobsonLP, CohenM, FrenchA, PhairJ, et al. (2013) Cause-specific life expectancies after age 35 for HIV-infected and HIV-negative individuals followed simultaneously in long-term cohort studies: 1984–2008. Am J Epidemiol 177: 116–125.
14. MillsEJ, BakandaC, BirungiJ, ChanK, FordN, et al. (2011) Life expectancy of persons receiving combination antiretroviral therapy in low-income countries: a cohort analysis from Uganda. Ann Intern Med 155: 209–216.
15. FoxMP, RosenS (2010) Patient retention in antiretroviral therapy programs up to three years on treatment in sub-Saharan Africa, 2007–2009: systematic review. Trop Med Int Health 15 (Suppl 1) 1–15.
16. BrinkhofMW, Pujades-RodriguezM, EggerM (2009) Mortality of patients lost to follow-up in antiretroviral treatment programmes in resource-limited settings: systematic review and meta-analysis. PLoS ONE 4: e5790 doi:10.1371/journal.pone.0005790.
17. MahyM, LewdenC, BrinkhofMW, DabisF, TassieJM, et al. (2010) Derivation of parameters used in Spectrum for eligibility for antiretroviral therapy and survival on antiretroviral therapy. Sex Transm Infect 86 (Suppl 2) ii28–ii34.
18. WalenskyRP, WoodR, CiaranelloAL, PaltielAD, LorenzanaSB, et al. (2010) Scaling up the 2010 World Health Organization HIV treatment guidelines in resource-limited settings: a model-based analysis. PLoS Med 7: e1000382 doi:10.1371/journal.pmed.1000382.
19. JohnsonLF, DorringtonRE (2006) Modelling the demographic impact of HIV/AIDS in South Africa and the likely impact of interventions. Demogr Res 14: 541–574.
20. Dorrington RE, Bourne D, Bradshaw D, Laubscher R, Timæus IM (2001) The impact of HIV/AIDS on adult mortality in South Africa. Cape Town: South African Medical Research Council. Available: http://www.mrc.ac.za/bod/complete.pdf. Accessed 30 July 2012.
21. BoulleA, Van CutsemG, HilderbrandK, CraggC, AbrahamsM, et al. (2010) Seven year experience of a primary care antiretroviral treatment programme in Khayelitsha, South Africa. AIDS 24: 563–572.
22. FoxMP, BrennanA, MaskewM, MacphailP, SanneI (2010) Using vital registration data to update mortality among patients lost to follow-up from ART programmes: evidence from the Themba Lethu Clinic, South Africa. Trop Med Int Health 15: 405–413.
23. DorringtonRE, BradshawD (2011) Maternal mortality in South Africa: lessons from a case study in the use of deaths reported by households in censuses and surveys. J Popul Res 28: 49–73.
24. SetelPW, MacfarlaneSB, SzreterS, MikkelsenL, JhaP, et al. (2007) A scandal of invisibility: making everyone count by counting everyone. Lancet 370: 1569–1577.
25. BirnbaumJK, MurrayCJ, LozanoR (2011) Exposing misclassified HIV/AIDS deaths in South Africa. Bull World Health Organ 89: 278–285.
26. HerbstAJ, MafojaneT, NewellML (2011) Verbal autopsy-based cause-specific mortality trends in rural KwaZulu-Natal, South Africa, 2000–2009. Popul Health Metr 9: 47.
27. JohnsonLF (2012) Access to antiretroviral treatment in South Africa, 2004–2011. South Afr J HIV Med 13: 22–27.
28. EggerM, EkoueviDK, WilliamsC, LyamuyaRE, MukumbiH, et al. (2012) Cohort profile: the International Epidemiological Databases to Evaluate AIDS (IeDEA) in sub-Saharan Africa. Int J Epidemiol 41: 1256–1264.
29. CornellM, TechnauK, FairallL, WoodR, MoultrieH, et al. (2009) Monitoring the South African antiretroviral programme 2003–2007: the IeDEA Southern Africa Collaboration. S Afr Med J 99: 653–660.
30. CornellM, GrimsrudA, FairallL, FoxMP, van CutsemG, et al. (2010) Temporal changes in programme outcomes among adult patients initiating antiretroviral therapy across South Africa, 2002–2007. AIDS 24: 2263–2270.
31. Department of Health (2003) Operational plan for comprehensive HIV and AIDS care, management and treatment for South Africa. Available: http://www.info.gov.za/otherdocs/2003/aidsplan/report.pdf. Accessed 4 March 2013.
32. Van CutsemG, FordN, HildebrandK, GoemaereE, MatheeS, et al. (2011) Correcting for mortality among patients lost to follow up on antiretroviral therapy in South Africa: a cohort analysis. PLoS ONE 6: e14684 doi:10.1371/journal.pone.0014684.
33. FrangakisCE, RubinDB (2001) Addressing an idiosyncrasy in estimating survival curves using double sampling in the presence of self-selected right censoring. Biometrics 57: 333–342.
34. DickmanPW, SloggettA, HillsM, HakulinenT (2004) Regression models for relative survival. Stat Med 23: 51–64.
35. EdererF, AxtellLM, CutlerSJ (1961) The relative survival rate: a statistical methodology. Natl Cancer Inst Monogr 6: 101–121.
36. Actuarial Society of South Africa (2011) ASSA2008 model. Available: http://aids.actuarialsociety.org.za/ASSA2008-Model-3480.htm. Accessed 8 March 2013.
37. EfronB, TibshiraniR (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1: 54–77.
38. DeanC, LawlessJF (1989) Tests for detecting overdispersion in Poisson regression models. J Am Stat Assoc 84: 467–472.
39. Molenberghs G, Kenward MG (2007) Missing data in clinical studies. Chichester (United Kingdom): John Wiley & Sons.
40. ChiangCL (1972) On constructing current life tables. J Am Stat Assoc 67: 538–541.
41. Chiang CL (1968) Introduction to stochastic processes in biostatistics. New York: John Wiley & Sons.
42. RosenS, FoxMP (2011) Retention in HIV care between testing and treatment in sub-Saharan Africa: a systematic review. PLoS Med 8: e1001056 doi:10.1371/journal.pmed.1001056.
43. KranzerK, LewisJJ, FordN, ZeineckerJ, OrrellC, et al. (2010) Treatment interruption in a primary care antiretroviral therapy program in South Africa: cohort analysis of trends and risk factors. J Acquir Immun Defic Syndr 55: e17–e23.
44. KranzerK, FordN (2011) Unstructured treatment interruption of antiretroviral therapy in clinical practice: a systematic review. Trop Med Int Health 16: 1297–1313.
45. PillayY, WhiteC, McCornickN (2012) How times have changed—HIV and AIDS in South Africa in 2011. S Afr Med J 102: 77–78.
46. BrinkhofMW, BoulleA, WeigelR, MessouE, MathersC, et al. (2009) Mortality of HIV-infected patients starting antiretroviral therapy in sub-Saharan Africa: comparison with HIV-unrelated mortality. PLoS Med 6: e1000066 doi:10.1371/journal.pmed.1000066.
47. EggerM, MayM, ChêneG, PhillipsAN, LedergerberB, et al. (2002) Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: a collaborative analysis of prospective studies. Lancet 360: 119–129.
48. TaiwoB, MurphyRL, KatlamaC (2010) Novel antiretroviral combinations in treatment-experienced patients with HIV infection: rationale and results. Drugs 70: 1629–1642.
49. BärnighausenT, ChaiyachatiK, ChimbindiN, PeoplesA, HabererJ, et al. (2011) Interventions to increase antiretroviral adherence in sub-Saharan Africa: a systematic review of evaluation studies. Lancet Infect Dis 11: 942–951.
50. NashD, KatyalM, BrinkhofMW, KeiserO, MayM, et al. (2008) Long-term immunologic response to antiretroviral therapy in low-income countries: a collaborative analysis of prospective studies. AIDS 22: 2291–2302.
51. LokJJ, BoschRJ, BensonCA, CollierAC, RobbinsGK, et al. (2010) Long-term increase in CD4+ T-cell counts during combination antiretroviral therapy for HIV-1 infection. AIDS 24: 1867–1876.
52. KingJT, JusticeAC, RobertsMS, ChangCC, FuscoJS (2003) Long-term HIV/AIDS survival estimation in the highly active antiretroviral therapy era. Med Decis Making 23: 9–20.
53. BraitsteinP, BrinkhofMW, DabisF, SchechterM, BoulleA, et al. (2006) Mortality of HIV-1-infected patients in the first year of antiretroviral therapy: comparison between low-income and high-income countries. Lancet 367: 817–824.
54. WilmothJR (2005) On the relationship between period and cohort mortality. Demogr Res 13: 231–280.
55. NakagawaF, LodwickRK, SmithCJ, SmithR, CambianoV, et al. (2012) Projected life expectancy of people with HIV according to timing of diagnosis. AIDS 26: 335–343.
56. LosinaE, SchackmanBR, SadownikSN, GeboKA, WalenskyRP, et al. (2009) Racial and sex disparities in life expectancy losses among HIV-infected persons in the United States: impact of risk behavior, late initiation, and early discontinuation of antiretroviral therapy. Clin Infect Dis 49: 1570–1578.
57. United Nations Department of Economic and Social Affairs Population Division (2011) World population prospects: the 2010 revision. New York: United Nations Department of Economic and Social Affairs Population Division.
58. KeiserO, ChiBH, GsponerT, BoulleA, OrrellC, et al. (2011) Outcomes of antiretroviral treatment in programmes with and without routine viral load monitoring in southern Africa. AIDS 25: 1761–1769.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2013 Číslo 4
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Co dělat při intoleranci statinů?
- Pleiotropní účinky statinů na kardiovaskulární systém
- DESATORO PRE PRAX: Aktuálne odporúčanie ESPEN pre nutričný manažment u pacientov s COVID-19
Najčítanejšie v tomto čísle
- PRISMA for Abstracts: Reporting Systematic Reviews in Journal and Conference Abstracts
- Excess Long-Term Mortality following Non-Variceal Upper Gastrointestinal Bleeding: A Population-Based Cohort Study
- Untreated Pain, Narcotics Regulation, and Global Health Ideologies
- Herpes Zoster Vaccine Effectiveness against Incident Herpes Zoster and Post-herpetic Neuralgia in an Older US Population: A Cohort Study