#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study


Mark Jit and colleagues report findings from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia).


Vyšlo v časopise: The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study. PLoS Med 13(11): e32767. doi:10.1371/journal.pmed.1002181
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1002181

Souhrn

Mark Jit and colleagues report findings from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia).


Zdroje

1. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016. E-pub ahead of print. doi: 10.1016/S1473-3099(16)00026-8 26874619

2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. Nature Publishing Group; 2013;496: 504–7. doi: 10.1038/nature12060 23563266

3. Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, et al. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface. 2013;10: 20130414–20130414. doi: 10.1098/rsif.2013.0414 23825116

4. Gibbons R V., Kalanarooj S, Jarman RG, Nisalak A, Vaughn DW, Endy TP, et al. Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences. Am J Trop Med Hyg. 2007;77: 910–3. 17984352

5. Endy TP, Yoon I-K, Mammen MP. Prospective Cohort Studies of Dengue Viral Transmission and Severity of Disease. Curr Top Microbiol Immunol. 2010; 338:1–13. doi: 10.1007/978-3-642-02215-9_1 19802574

6. Burke DS, Nisalak A, Johnson DE, Scott RMcN. A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg. 1988;38: 172–180. 3341519

7. Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisayakorn U, Scott RM, et al. Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg. 2003;68: 191–202. 12641411

8. Capeding MR, Tran NH, Hadinegoro SRS, Ismail HIHM, Chotpitayasunondh T, Chua MN, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: A phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 2014;384: 1358–1365. doi: 10.1016/S0140-6736(14)61060-6 25018116

9. Villar L, Dayan GH, Arredondo-García JL, Rivera DM, Cunha R, Deseda C, et al. Efficacy of a Tetravalent Dengue Vaccine in Children in Latin America. N Engl J Med. 2015;372: 113–123. doi: 10.1056/NEJMoa1411037 25365753

10. Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N Engl J Med. 2015;373:1195–1206. doi: 10.1056/NEJMoa1506223 26214039

11. World Health Organization. Open call for Comparative dengue vaccine impact modelling. 2015. http://www.who.int/immunization/research/meetings_workshops/Open_call_dengue_vaccine_impact_modelling.pdf?ua=1

12. World Health Organisation. WHO Consultation on comparative mathematical modelling of dengue vaccine public health impact. 2016 [cited 22 Apr 2016]. http://www.who.int/immunization/research/meetings_workshops/comparative_mathmodelling_dengue_20jan2016/en/

13. World Health Organization. SAGE meeting of APRIL 2016. 2016 [cited 30 Mar 2016]. http://www.who.int/immunization/sage/meetings/2016/april/presentations_background_docs/en/

14. Meeting of the Strategic Advisory Group of Experts on immunization, April 2016 –conclusions and recommendations. Relev épidémiologique Hebd / Sect d’hygiène du Secrétariat la Société des Nations = Wkly Epidemiol Rec / Heal Sect Secr Leag Nations. 2016;91: 266–84.

15. World Health Organization. Dengue vaccine: WHO position paper—July 2016. Wkly Epidemiol Rec. 2016;30: 349–364.

16. Pang T. SAGE committee advice on dengue vaccine. Lancet Infect Dis. 2016;16: 880–882. doi: 10.1016/S1473-3099(16)30167-0 27477966

17. Wilder-Smith A, Vannice KS, Hombach J, Farrar J, Nolan T. Population Perspectives and World Health Organization Recommendations for CYD-TDV Dengue Vaccine. J Infect Dis. 2016; jiw341. E-pub ahead of print. doi: 10.1093/infdis/jiw341 27496977

18. World Health Organisation. SAGE Working Group on Dengue Vaccines and Vaccination. 2016 [cited 7 Apr 2016]. http://www.who.int/immunization/policy/sage/sage_wg_dengue_mar2015/en/

19. Nagao Y, Koelle K. Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci. 2008;105: 2238–2243. doi: 10.1073/pnas.0709029105 18250338

20. Lourenco J, Recker M. Natural, Persistent Oscillations in a Spatial Multi-Strain Disease System with Application to Dengue. Pascual M, editor. PLoS Comput Biol. Public Library of Science; 2013;9: e1003308. doi: 10.1371/journal.pcbi.1003308 24204241

21. Lourenço J, Recker M. Dengue serotype immune-interactions and their consequences for vaccine impact predictions. Epidemics. 2016;16: 40–48. doi: 10.1016/j.epidem.2016.05.003 27663790

22. Rodriguez-Barraquer I, Mier-y-Teran-Romero L, Schwartz IB, Burke DS, Cummings DAT. Potential opportunities and perils of imperfect dengue vaccines. Vaccine. 2014;32: 514–20. doi: 10.1016/j.vaccine.2013.11.020 24269318

23. Rodriguez-Barraquer I, Mier-y-Teran-Romero L, Burke DS, Cummings DAT. Challenges in the interpretation of dengue vaccine trial results. PLoS Negl Trop Dis. 2013;7: e2126. doi: 10.1371/journal.pntd.0002126 24009782

24. Coudeville L, Baurin N, Vergu E. Estimation of parameters related to vaccine efficacy and dengue transmission from two large phase III studies. Vaccine. 2015; 1–9. doi: 10.1016/j.vaccine.2015.11.023 26614588

25. Hladish TJ, Pearson CAB, Chao DL, Rojas DP, Recchia GL, Gómez-Dantés H, et al. Projected Impact of Dengue Vaccination in Yucatán, Mexico. Carvalho MS, editor. PLoS Negl Trop Dis. 2016;10: e0004661. doi: 10.1371/journal.pntd.0004661 27227883

26. Karl S, Halder N, Kelso JK, Ritchie S a., Milne GJ. A spatial simulation model for dengue virus infection in urban areas. BMC Infect Dis. 2014;14: 447. doi: 10.1186/1471-2334-14-447 25139524

27. Ferguson NM, Rodriguez-Barraquer I, Dorigatti I, Mier-y-Teran-Romero L, Laydon DJ, Cummings DAT. Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment. Science. 2016;353: 1033–1036. doi: 10.1126/science.aaf9590 27701113

28. Perkins TA, Reiner RC, ten Bosch QA, Espana G, Verma A, Liebman KA, et al. Statistical and biological uncertainties associated with vaccine efficacy estimates and their implications for dengue vaccine impact projections. bioRxiv. 2016. Preprint. http://dx.doi.org/10.1101/082396

29. Guy B, Jackson N. Dengue vaccine: hypotheses to understand CYD-TDV-induced protection. Nat Rev Microbiol. Nature Publishing Group; 2015;14: 45–54. doi: 10.1038/nrmicro.2015.2 26639777

30. L’Azou M, Moureau A, Sarti E, Nealon J, Zambrano B, Wartel TA, et al. Symptomatic Dengue in Children in 10 Asian and Latin American Countries. N Engl J Med. 2016;374: 1155–1166. doi: 10.1056/NEJMoa1503877 27007959

31. Braga C, Luna CF, Martelli CMT, de Souza WV, Cordeiro MTT, Alexander N, et al. Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil. Acta Trop. 2010;113: 234–240. doi: 10.1016/j.actatropica.2009.10.021 19896921

32. Rodríguez-Barraquer I, Buathong R, Iamsirithaworn S, Nisalak A, Lessler J, Jarman RG, et al. Revisiting Rayong: Shifting Seroprofiles of Dengue in Thailand and Their Implications for Transmission and Control. Am J Epidemiol. 2014;179: 353–360. doi: 10.1093/aje/kwt256 24197388

33. Amaya-Larios IY, Martinez-Vega RA, Mayer S V., Galeana-Hernandez M, Comas-Garcia A, Sepulveda-Salinas KJ, et al. Seroprevalence of Neutralizing Antibodies Against Dengue Virus in Two Localities in the State of Morelos, Mexico. Am J Trop Med Hyg. 2014;91: 1057–1065. doi: 10.4269/ajtmh.14-0145 25294613

34. Rodríguez-Barraquer I, Solomon SS, Kuganantham P, Srikrishnan AK, Vasudevan CK, Iqbal SH, et al. The Hidden Burden of Dengue and Chikungunya in Chennai, India. Kittayapong P, editor. PLoS Negl Trop Dis. 2015;9: e0003906. doi: 10.1371/journal.pntd.0003906 26181441

35. Siqueira JB Jr, Vinhal LC, Said RFC, Hoffmann JL, Martins J, Barbiratto SB, et al. Dengue no Brasil: tendências e mudanças na epidemiologia, com ênfase nas epidemias de 2008 e 2010. In: Saúde Brasil 2010: uma análise da situação de saúde e de evidências selecionadas de impacto de ações de vigilância em saúde. Brasília: Ministério da Saúde; 2011. pp. 159–171

36. PAHO. Number of Reported Cases of Dengue and Severe Dengue (SD) in the Americas, by Country. 2016 [cited 16 Mar 2016]. http://www.paho.org/hq/index.php?option=com_topics&view=rdmore&cid=6290&Itemid=40734

37. Salud S de. Sistema Nacional de Vigilancia Epidemiologica. Panorama epidemiológico de fiebre por dengue y fiebre hemorrágica por dengue. 2016. www.inegi.org.mx

38. Cafferata ML, Bardach A, Rey-Ares L, Alcaraz A, Cormick G, Gibbons L, et al. Dengue Epidemiology and Burden of Disease in Latin America and the Caribbean: A Systematic Review of the Literature and Meta-Analysis. Value Heal Reg Issues. Elsevier; 2013;2: 347–356. doi: 10.1016/j.vhri.2013.10.002

39. World Health Organisation. Making choices in health: WHO guide to cost-effectiveness. 2003 [cited 1 Apr 2016]. Available: http://www.who.int/choice/publications/p_2003_generalised_cea.pdf

40. Koopmanschap MA, Rutten FFH, van Ineveld BM, van Roijen L. The friction cost method for measuring indirect costs of disease. J Health Econ. Institute for Medical Technology Assessment, Erasmus University, Rotterdam, The Netherlands; 1995;14: 171–189. doi: 10.1016/0167-6296(94)00044-5

41. World Health Organization. The Global Burden of Disease: 2004 Update. 2008. 10.1038/npp.2011.85

42. Martelli CMT, Siqueira JB, Parente MPPD, de SA Zara AL, Oliveira CS, Braga C, et al. Economic Impact of Dengue: Multicenter Study across Four Brazilian Regions. PLoS Negl Trop Dis. 2015;9: e0004042. doi: 10.1371/journal.pntd.0004042 26402905

43. Edillo FE, Halasa YA, Largo FM, Erasmo JN V, Amoin NB, Alera MTP, et al. Economic cost and burden of dengue in the Philippines. Am J Trop Med Hyg. 2015;92: 360–366. doi: 10.4269/ajtmh.14-0139 25510723

44. Nguyet MN, Duong THK, Trung VT, Nguyen TTHQ, Tran CNB, Long VT, et al. Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A. 2013;110: 9072–7. doi: 10.1073/pnas.1303395110 23674683

45. Duong V, Lambrechts L, Paul RE, Ly S, Lay RS, Long KC, et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci. 2015;112: 14688–14693. doi: 10.1073/pnas.1508114112 26553981

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2016 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#