Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis
Claudia Langenberg and colleagues show that high circulating branched chain amino acids associate with future risk of type 2 diabetes.
Vyšlo v časopise:
Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med 13(11): e32767. doi:10.1371/journal.pmed.1002179
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002179
Souhrn
Claudia Langenberg and colleagues show that high circulating branched chain amino acids associate with future risk of type 2 diabetes.
Zdroje
1. Felig P, Marliss E, Cahill GF Jr (1969) Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 281: 811–816. doi: 10.1056/NEJM196910092811503 5809519
2. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, et al. (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9: 311–326. doi: 10.1016/j.cmet.2009.02.002 19356713
3. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, et al. (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17: 448–453. doi: 10.1038/nm.2307 21423183
4. Floegel A, Stefan N, Yu Z, Muhlenbruch K, Drogan D, et al. (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62: 639–648. doi: 10.2337/db12-0495 23043162
5. Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, et al. (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 8: 615. doi: 10.1038/msb.2012.43 23010998
6. Palmer ND, Stevens RD, Antinozzi PA, Anderson A, Bergman RN, et al. (2015) Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab 100: E463–E468. doi: 10.1210/jc.2014-2357 25423564
7. Lynch CJ, Adams SH (2014) Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10: 723–736. doi: 10.1038/nrendo.2014.171 25287287
8. Newgard CB (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab 15: 606–614. doi: 10.1016/j.cmet.2012.01.024 22560213
9. Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, et al. (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16: 122–134. doi: 10.1016/j.cmet.2012.06.006 22768844
10. Shin AC, Fasshauer M, Filatova N, Grundell LA, Zielinski E, et al. (2014) Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab 20: 898–909. doi: 10.1016/j.cmet.2014.09.003 25307860
11. Wurtz P, Wang Q, Kangas AJ, Richmond RC, Skarp J, et al. (2014) Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med 11: e1001765. doi: 10.1371/journal.pmed.1001765 25490400
12. Smith GD, Ebrahim S (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32: 1–22. 12689998
13. Burgess S, Dudbridge F, Thompson SG (2016) Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 35:1880–1906. doi: 10.1002/sim.6835 26661904
14. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37: 658–665. doi: 10.1002/gepi.21758 24114802
15. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, et al. (2012) Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380: 572–580. doi: 10.1016/S0140-6736(12)60312-2 22607825
16. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354: 1264–1272. doi: 10.1056/NEJMoa054013 16554528
17. Myocardial Infarction Genetics Consortium Investigators, Stitziel NO, Won HH, Morrison AC, Peloso GM, et al. (2014) Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med 371: 2072–2082. doi: 10.1056/NEJMoa1405386 25390462
18. Ference BA, Majeed F, Penumetcha R, Flack JM, Brook RD (2015) Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study. J Am Coll Cardiol 65: 1552–1561. doi: 10.1016/j.jacc.2015.02.020 25770315
19. Lotta LA, Sharp SJ, Burgess S, Perry JR, Stewart ID, et al. (2016) Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA 316: 1383–1391. doi: 10.1001/jama.2016.14568 27701660
20. Scott RA, Freitag DF, Li L, Chu AY, Surendran P, et al. (2016) A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Sci Transl Med 8: 341ra376.
21. Menni C, Fauman E, Erte I, Perry JR, Kastenmuller G, et al. (2013) Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 62: 4270–4276. doi: 10.2337/db13-0570 23884885
22. World Health Organization (2016 Jun) Obesity and overweight. Fact sheet. Available: http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 10 Oct 2016.
23. World Health Organization (2016 Jun) Diabetes. Fact sheet. Available: http://www.who.int/mediacentre/factsheets/fs312/en/. Accessed 10 Oct 2016.
24. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, et al. (2014) An atlas of genetic influences on human blood metabolites. Nat Genet 46: 543–550. doi: 10.1038/ng.2982 24816252
25. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, et al. (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44: 981–990. doi: 10.1038/ng.2383 22885922
26. InterAct Consortium, Langenberg C, Sharp S, Forouhi NG, Franks PW, et al. (2011) Design and cohort description of the InterAct Project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study. Diabetologia 54: 2272–2282. doi: 10.1007/s00125-011-2182-9 21717116
27. Collins R (2012) What makes UK Biobank special? Lancet 379: 1173–1174. doi: 10.1016/S0140-6736(12)60404-8 22463865
28. Day N, Oakes S, Luben R, Khaw KT, Bingham S, et al. (1999) EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer 80 (Suppl 1): 95–103.
29. Biocrates Life Sciences (2016) Absolute/DQ p180 Kit. Available: http://www.biocrates.com/images/stories/pdf/Folders/produktfolder_180-6_einzelseiten_1.pdf. Accessed 10 Oct 2016.
30. Evans AM, Bridgewater BR, Liu Q, Mitchell MW, Robinson RJ, et al. (2014) High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics (Los Angel) 4: 132.
31. Tillin T, Hughes AD, Wang Q, Wurtz P, Ala-Korpela M, et al. (2015) Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia 58: 968–979. doi: 10.1007/s00125-015-3517-8 25693751
32. Soininen P, Kangas AJ, Wurtz P, Suna T, Ala-Korpela M (2015) Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet 8: 192–206. doi: 10.1161/CIRCGENETICS.114.000216 25691689
33. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11: 499–511. doi: 10.1038/nrg2796 20517342
34. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26: 2190–2191. doi: 10.1093/bioinformatics/btq340 20616382
35. Loh PR, Bhatia G, Gusev A, Finucane HK, Bulik-Sullivan BK, et al. (2015) Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat Genet 47: 1385–1392. doi: 10.1038/ng.3431 26523775
36. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, et al. (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47: 1236–1241. doi: 10.1038/ng.3406 26414676
37. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, et al. (2016) LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. Epub ahead of print. doi: 10.1093/bioinformatics/btw613 27663502
38. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, et al. (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24: 2938–2939. doi: 10.1093/bioinformatics/btn564 18974171
39. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, et al. (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518: 197–206. doi: 10.1038/nature14177 25673413
40. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, et al. (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518: 187–196. doi: 10.1038/nature14132 25673412
41. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, et al. (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44: 991–1005. doi: 10.1038/ng.2385 22885924
42. Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, et al. (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44: 659–669. doi: 10.1038/ng.2274 22581228
43. Global Lipids Genetics Consortium, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, et al. (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45: 1274–1283. doi: 10.1038/ng.2797 24097068
44. Scott RA, Fall T, Pasko D, Barker A, Sharp SJ, et al. (2014) Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity. Diabetes 63: 4378–4387. doi: 10.2337/db14-0319 24947364
45. Ostergaard SD, Mukherjee S, Sharp SJ, Proitsi P, Lotta LA, et al. (2015) Associations between potentially modifiable risk factors and Alzheimer disease: a Mendelian randomization study. PLoS Med 12: e1001841. doi: 10.1371/journal.pmed.1001841 26079503
46. Nead KT, Sharp SJ, Thompson DJ, Painter JN, Savage DB, et al. (2015) Evidence of a causal association between insulinemia and endometrial cancer: a Mendelian randomization analysis. J Natl Cancer Inst 107: djv178. doi: 10.1093/jnci/djv178 26134033
47. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64: 5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 15289330
48. Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, et al. (2012) Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet 44: 269–276. doi: 10.1038/ng.1073 22286219
49. Lu G, Sun H, She P, Youn JY, Warburton S, et al. (2009) Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. J Clin Invest 119: 1678–1687. doi: 10.1172/JCI38151 19411760
50. Zhao Y, Hawes J, Popov KM, Jaskiewicz J, Shimomura Y, et al. (1994) Site-directed mutagenesis of phosphorylation sites of the branched chain alpha-ketoacid dehydrogenase complex. J Biol Chem 269: 18583–18587. 8034607
51. Wynn RM, Kato M, Machius M, Chuang JL, Li J, et al. (2004) Molecular mechanism for regulation of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase complex by phosphorylation. Structure 12: 2185–2196. doi: 10.1016/j.str.2004.09.013 15576032
52. Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, et al. (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4: 214. doi: 10.1038/msb.2008.50 18682704
53. Ho JE, Larson MG, Vasan RS, Ghorbani A, Cheng S, et al. (2013) Metabolite profiles during oral glucose challenge. Diabetes 62: 2689–2698. doi: 10.2337/db12-0754 23382451
54. Lian K, Du C, Liu Y, Zhu D, Yan W, et al. (2015) Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Diabetes 64: 49–59. doi: 10.2337/db14-0312 25071024
55. /Strauss KA, Puffenberger EG, Morton DH (2013 May 9) Maple syrup urine disease. GeneReviews [Internet]. Available: https://www.ncbi.nlm.nih.gov/books/NBK1319/. Accessed 27 Oct 2016.
56. Oyarzabal A, Martinez-Pardo M, Merinero B, Navarrete R, Desviat LR, et al. (2013) A novel regulatory defect in the branched-chain alpha-keto acid dehydrogenase complex due to a mutation in the PPM1K gene causes a mild variant phenotype of maple syrup urine disease. Hum Mutat 34: 355–362. doi: 10.1002/humu.22242 23086801
57. Tso SC, Qi X, Gui WJ, Chuang JL, Morlock LK, et al. (2013) Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain alpha-ketoacid dehydrogenase kinase. Proc Natl Acad Sci U S A 110: 9728–9733. doi: 10.1073/pnas.1303220110 23716694
58. Tso SC, Gui WJ, Wu CY, Chuang JL, Qi X, et al. (2014) Benzothiophene carboxylate derivatives as novel allosteric inhibitors of branched-chain alpha-ketoacid dehydrogenase kinase. J Biol Chem 289: 20583–20593. doi: 10.1074/jbc.M114.569251 24895126
59. Brunetti-Pierri N, Lanpher B, Erez A, Ananieva EA, Islam M, et al. (2011) Phenylbutyrate therapy for maple syrup urine disease. Hum Mol Genet 20: 631–640. doi: 10.1093/hmg/ddq507 21098507
60. Burrage LC, Jain M, Gandolfo L, Lee BH, Members of the Urea Cycle Disorders Consortium, et al. (2014) Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders. Mol Genet Metab 113: 131–135. doi: 10.1016/j.ymgme.2014.06.005 25042691
61. Xiao C, Giacca A, Lewis GF (2011) Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes 60: 918–924. doi: 10.2337/db10-1433 21270237
62. Danner DJ, Davidson ED, Elsas LJ 2nd (1975) Thiamine increases the specific activity of human liver branched chain alpha-ketoacid dehydrogenase. Nature 254: 529–530. 1121328
63. Lukens FD (1964) Insulin and protein metabolism. Diabetes 13: 451–461. 14208234
64. Luck JM, Morrison G, Wilbur LF (1928) The effect of insulin on the amino acid content of blood. J Biol Chem 77: 151–156.
65. Lips MA, Van Klinken JB, van Harmelen V, Dharuri HK, ‘t Hoen PA, et al. (2014) Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care 37: 3150–3156. doi: 10.2337/dc14-0195 25315204
66. Kakazu E, Kondo Y, Ninomiya M, Kimura O, Nagasaki F, et al. (2013) The influence of pioglitazone on the plasma amino acid profile in patients with nonalcoholic steatohepatitis (NASH). Hepatol Int 7: 577–585. doi: 10.1007/s12072-012-9395-y 26201790
67. Glynn EL, Piner LW, Huffman KM, Slentz CA, Elliot-Penry L, et al. (2015) Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans. Diabetologia 58: 2324–2335. doi: 10.1007/s00125-015-3705-6 26254576
68. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, et al. (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341: 1241214. doi: 10.1126/science.1241214 24009397
69. Xu M, Qi Q, Liang J, Bray GA, Hu FB, et al. (2013) Genetic determinant for amino acid metabolites and changes in body weight and insulin resistance in response to weight-loss diets: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation 127: 1283–1289. doi: 10.1161/CIRCULATIONAHA.112.000586 23446828
70. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, et al. (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535: 376–381. doi: 10.1038/nature18646 27409811
71. Tang C, Han P, Oprescu AI, Lee SC, Gyulkhandanyan AV, et al. (2007) Evidence for a role of superoxide generation in glucose-induced beta-cell dysfunction in vivo. Diabetes 56: 2722–2731. doi: 10.2337/db07-0279 17682092
72. Lu H, Koshkin V, Allister EM, Gyulkhandanyan AV, Wheeler MB (2010) Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 59: 448–459. doi: 10.2337/db09-0129 19903739
73. Mogos T, Cheta CP, Mincu IT (1994) Clinical consequences of disorders in the intermediate metabolism of branched chain amino acids (valine, leucine and isoleucine). Rom J Intern Med 32: 57–61. 8081313
74. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, et al. (2009) The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 18: 4081–4088. doi: 10.1093/hmg/ddp357 19643913
75. Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, et al. (2013) A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab 18: 130–143. doi: 10.1016/j.cmet.2013.06.013 23823483
76. Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, et al. (2011) Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest 121: 1402–1411. doi: 10.1172/JCI44442 21403394
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2016 Číslo 11
- Pleiotropní účinky statinů na kardiovaskulární systém
- Účinnost alirocumabu v terapii hypercholesterolémie u jedinců s vysokým kardiovaskulárním rizikem
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- Nech brouka žít… Ať žije astma!
- Intermitentní hladovění v prevenci a léčbě chorob
Najčítanejšie v tomto čísle
- Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review
- Three Steps to Improve Management of Noncommunicable Diseases in Humanitarian Crises
- Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis
- A Core Outcome Set for the Benefits and Adverse Events of Bariatric and Metabolic Surgery: The BARIACT Project