Lifestyle Advice Combined with Personalized Estimates of Genetic or Phenotypic Risk of Type 2 Diabetes, and Objectively Measured Physical Activity: A Randomized Controlled Trial
In a randomized controlled trial, Job Godino and colleagues study the effects of providing personalized information about genetic and phenotypic risk of type 2 diabetes as compared with standard lifestyle advice.
Vyšlo v časopise:
Lifestyle Advice Combined with Personalized Estimates of Genetic or Phenotypic Risk of Type 2 Diabetes, and Objectively Measured Physical Activity: A Randomized Controlled Trial. PLoS Med 13(11): e32767. doi:10.1371/journal.pmed.1002185
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002185
Souhrn
In a randomized controlled trial, Job Godino and colleagues study the effects of providing personalized information about genetic and phenotypic risk of type 2 diabetes as compared with standard lifestyle advice.
Zdroje
1. Hu FB. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care. 2011;34: 1249–57. doi: 10.2337/dc11-0442 21617109
2. Simmons RK, Unwin N, Griffin SJ. International Diabetes Federation: An update of the evidence concerning the prevention of type 2 diabetes. Diabetes Res Clin Pract. 2010;87: 143–149. doi: 10.1016/j.diabres.2009.10.003 19913319
3. Ahmad LA, Crandall JP. Type 2 diabetes prevention: A review. Clin Diabetes. 2010;28: 53–59. doi: 10.2337/diaclin.28.2.53
4. Yates T, Davies M, Khunti K. Preventing type 2 diabetes: can we make the evidence work? Postgrad Med J. 2009;85: 475–80. doi: 10.1136/pgmj.2008.076166 19734515
5. Edelman E, Eng C. A practical guide to interpretation and clinical application of personal genomic screening. BMJ. 2009;339: b4253. doi: 10.1136/bmj.b4253 19875427
6. Mihaescu R, Meigs J, Sijbrands E, Janssens AC. Genetic risk profiling for prediction of type 2 diabetes. PLOS Curr. 2011;3: RRN1208. doi: 10.1371/currents.RRN1208 21278902
7. McBride CM, Koehly LM, Sanderson SC, Kaphingst KA. The behavioral response to personalized genetic information: Will genetic risk profiles motivate individuals and families to choose more healthful behaviors? Annu Rev Public Health. 2010;31: 89–103. doi: 10.1146/annurev.publhealth.012809.103532 20070198
8. Wang C, Bowen DJ, Kardia SLR. Research and practice opportunities at the intersection of health education, health behavior, and genomics. Heal Educ Behav. 2005;32: 686–701. doi: 10.1177/1090198105278827 16148214
9. Loos RJF. Genetics: Genome-wide risk profiles—will they change your life(style)? Nat Rev Endocrinol. Nature Publishing Group; 2011;7: 252–4. doi: 10.1038/nrendo.2011.41 21403666
10. Marteau TM, Weinman J. Self-regulation and the behavioural response to DNA risk information: A theoretical analysis and framework for future research. Soc Sci Med. 2006;62: 1360–8. doi: 10.1016/j.socscimed.2005.08.005 16162383
11. Marteau TM. Genetic risk and behavioural change. BMJ. 2001;322: 1056–1059. doi: 10.1136/bmj.322.7293.1056 11325776
12. Bensend TA, Veach PMC, Niendorf KB. What’s the harm? Genetic counselor perceptions of adverse effects of genetics service provision by non-genetics professionals. J Genet Couns. 2014;23: 48–63. doi: 10.1007/s10897-013-9605-3 23754506
13. Collins RE, Wright AJ, Marteau TM. Impact of communicating personalized genetic risk information on perceived control over the risk: A systematic review. Genet Med. 2011;13: 273–7. doi: 10.1097/GIM.0b013e3181f710ca 20921892
14. Cameron LD, Sherman KA, Marteau TM, Brown PM. Impact of genetic risk information and type of disease on perceived risk, anticipated affect, and expected consequences of genetic tests. Heal Psychol. 2009;28: 307–16. doi: 10.1037/a0013947 19450036
15. Milne S, Sheeran P, Orbell S. Prediction and Intervention in Health-Related Behavior: A Meta-Analytic Review of Protection Motivation Theory. J Appl Soc Psychol. 2000;30: 106–143. doi: 10.1111/j.1559-1816.2000.tb02308.x
16. McClure J. Are biomarkers useful treatment aids for promoting health behavior change? An empirical review. Am J Prev Med. 2002;22: 200–207. doi: 10.1016/S0749-3797(01)00425-1 11897465
17. Hollands GJ, French DP, Griffin SJ, Prevost AT, Sutton S, King S, et al. The impact of communicating genetic risks of disease on risk-reducing health behaviour: systematic review with meta-analysis. Bmj. 2016;352: i1102. doi: 10.1136/bmj.i1102 26979548
18. Voils CI, Coffman CJ, Grubber JM, Edelman D, Sadeghpour A, Maciejewski ML, et al. Does Type 2 Diabetes Genetic Testing and Counseling Reduce Modifiable Risk Factors? A Randomized Controlled Trial of Veterans. J Gen Intern Med. 2015;30: 1591–8. doi: 10.1007/s11606-015-3315-5 25876740
19. Grant RW, O’Brien KE, Waxler JL, Vassy JL, Delahanty LM, Bissett LG, et al. Personalized genetic risk counseling to motivate diabetes prevention: a randomized trial. Diabetes Care. 2013;36: 13–9. doi: 10.2337/dc12-0884 22933432
20. Godino JG, van Sluijs EMF, Marteau TM, Sutton S, Sharp SJ, Griffin SJ. Effect of communicating genetic and phenotypic risk for type 2 diabetes in combination with lifestyle advice on objectively measured physical activity: protocol of a randomised controlled trial. BMC Public Health. BMC Public Health; 2012;12: 444. doi: 10.1186/1471-2458-12-444 22708638
21. MRC Epidemiology Unit. The Fenland Study. In: 2007 [Internet]. [cited 1 Nov 2011]. Available: http://www.mrc-epid.cam.ac.uk/research/studies/fenland-study/
22. Brage S, Brage N, Franks PW, Ekelund U, Wareham NJ. Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur J Clin Nutr. 2005;59: 561–70. doi: 10.1038/sj.ejcn.1602118 15714212
23. Cardiovascular Review Group Committee on Medical Aspects of Food Policy. Nutritional aspects of cardiovascular disease. Report on health and social subjects 46. London; 1994.
24. Department of Health Physical Activity Health Improvement and Prevention. At least five a week: Evidence on the impact of physical activity and its relationship to health. A report from the Chief Medical Officer. London; 2004 Dec.
25. Price H. Risk communication: Why, what and how? Diabetes Prim Care. 2010;12: 100–104.
26. Gigerenzer G, Edwards A. Simple tools for understanding risks: From innumeracy to insight. BMJ. 2003;327: 741–744. doi: 10.1136/bmj.327.7417.741 14512488
27. Edwards A, Gray J, Clarke A, Dundon J, Elwyn G, Gaff C, et al. Interventions to improve risk communication in clinical genetics: Systematic review. Patient Educ Couns. 2008;71: 4–25. doi: 10.1016/j.pec.2007.11.026 18207694
28. Fagerlin A, Zikmund-Fisher BJ, Ubel PA. “If I’m better than average, then I’m ok?”: Comparative information influences beliefs about risk and benefits. Patient Educ Couns. 2007;69: 140–144. doi: 10.1016/j.pec.2007.08.008 17942271
29. Mason D, Prevost AT, Sutton S. Perceptions of absolute versus relative differences between personal and comparison health risk. Heal Psychol. 2008;27: 87–92. doi: 10.1037/0278-6133.27.1.87 18230018
30. Edwards A, Elwyn G, Mulley A. Explaining risks: turning numerical data into meaningful pictures. BMJ. 2002;324: 827–30. doi: 10.1136/bmj.324.7341.827 11934777
31. Cameron L. Can our health behaviour models handle imagery-based processes and communications? Eur Heal Psychol. 2009;11: 56–58.
32. DeCODEme. Risk calculations. Reykjavík, Iceland; 2007.
33. Navigenics. The science behind the Navigenics service. Forster City, California; 2007.
34. andMe. (White Paper 23–01) Estimating genotype-specific incidence for one or several loci. Mountain View, California; 2007.
35. Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: Towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev. 2000;16: 164–71. 10867715
36. Rahman M, Simmons RK, Harding A-H, Wareham NJ, Griffin SJ. A simple risk score identifies individuals at high risk of developing type 2 diabetes: A prospective cohort study. Fam Pract. 2008;25: 191–6. doi: 10.1093/fampra/cmn024 18515811
37. Brage S, Ekelund U, Brage N, Hennings M a, Froberg K, Franks PW, et al. Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity. J Appl Physiol. 2007;103: 682–92. doi: 10.1152/japplphysiol.00092.2006 17463305
38. Brage S, Brage N, Franks PW, Ekelund U, Wong M-Y, Andersen LB, et al. Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J Appl Physiol. 2004;96: 343–51. doi: 10.1152/japplphysiol.00703.2003 12972441
39. Thompson D, Batterham AM, Bock S, Robson C, Stokes K. Assessment of low-to-moderate intensity physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with branched-equation modeling. J Nutr. 2006;136: 1037–42. 16549471
40. Strath SJ, Brage S, Ekelund U. Integration of physiological and accelerometer data to improve physical activity assessment. Med Sci Sport Exerc. 2005;37: S563–S571. doi: 10.1249/01.mss.0000185650.68232.3f
41. StataCorp. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP; 2011.
42. White IR, Thompson SG. Adjusting for partially missing baseline measurements in randomized trials. Stat Med. 2005;24: 993–1007. doi: 10.1002/sim.1981 15570623
43. Godino JG, Watkinson C, Corder K, Marteau TM, Sutton S, Sharp SJ, et al. Impact of personalised feedback about physical activity on change in objectively measured physical activity (the FAB Study): A randomised controlled trial. Baradaran HR, editor. PLoS One. Public Library of Science; 2013;8: e75398. doi: 10.1371/journal.pone.0075398 24066178
44. Borm GF, Fransen J, Lemmens W a JG. A simple sample size formula for analysis of covariance in randomized clinical trials. J Clin Epidemiol. 2007;60: 1234–8. doi: 10.1016/j.jclinepi.2007.02.006 17998077
45. Zlowodzki M, Bhandari M. Outcome measures and implications for sample-size calculations. J Bone Jt Surg. 2009;91 Suppl 3: 35–40. doi: 10.2106/JBJS.H.01602 19411498
46. Godino JG, van Sluijs EMF, Sutton S, Griffin SJ. Understanding perceived risk of type 2 diabetes in healthy middle-aged adults: A cross-sectional study of associations with modelled risk, clinical risk factors, and psychological factors. Diabetes Res Clin Pract. 2014;106: 412–419. doi: 10.1016/j.diabres.2014.10.004 25467619
47. Marteau TM, French DP, Griffin SJ, Prevost AT, Sutton S, Watkinson C, et al. Effects of communicating DNA-based disease risk estimates on risk-reducing behaviours. Cochrane Database Syst Rev. 2010;10: CD007275. doi: 10.1002/14651858.CD007275.pub2 20927756
48. Bloss CS, Schork NJ, Topol EJ. Effect of Direct-to-Consumer Genomewide Profiling to Assess Disease Risk. N Engl J Med. 2011;364: 524–534. doi: 10.1056/NEJMoa1011893 21226570
49. Heshka JT, Palleschi C, Howley H, Wilson B, Wells PS. A systematic review of perceived risks, psychological and behavioral impacts of genetic testing. Genet Med. 2008;10: 19–32. doi: 10.1097/GIM.0b013e31815f524f 18197053
50. Usher-Smith JA, Silarova B, Schuit E, Moons KGM, Griffin SJ. Impact of provision of cardiovascular disease risk estimates to healthcare professionals and patients: a systematic review. BMJ Open. 2015;5: e008717. doi: 10.1136/bmjopen-2015-008717 26503388
51. Kullo IJ, Jouni H, Austin EE, Brown S-A, Kruisselbrink TM, Isseh IN, et al. Incorporating a Genetic Risk Score Into Coronary Heart Disease Risk Estimates: Effect on Low-Density Lipoprotein Cholesterol Levels (the MI-GENES Clinical Trial). Circulation. 2016;133: 1181–8. doi: 10.1161/CIRCULATIONAHA.115.020109 26915630
52. Sivell S, Elwyn G, Gaff CL, Clarke AJ, Iredale R, Shaw C, et al. How risk is perceived, constructed and interpreted by clients in clinical genetics, and the effects on decision making: Systematic review. J Genet Couns. 2008;17: 30–63. doi: 10.1007/s10897-007-9132-1 17968638
53. Frieden TR. A framework for public health action: The health impact pyramid. Am J Public Health. 2010;100: 590–5. doi: 10.2105/AJPH.2009.185652 20167880
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2016 Číslo 11
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Metamizol v liečbe pooperačnej bolesti u detí do 6 rokov veku
- Co dělat při intoleranci statinů?
Najčítanejšie v tomto čísle
- Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review
- Three Steps to Improve Management of Noncommunicable Diseases in Humanitarian Crises
- A Core Outcome Set for the Benefits and Adverse Events of Bariatric and Metabolic Surgery: The BARIACT Project
- Validity of a Minimally Invasive Autopsy for Cause of Death Determination in Adults in Mozambique: An Observational Study