The Rise of Consumer Health Wearables: Promises and Barriers
Lukasz Piwek and colleagues consider whether wearable technology can become a valuable asset for health care.
Vyšlo v časopise:
The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med 13(2): e32767. doi:10.1371/journal.pmed.1001953
Kategorie:
Essay
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001953
Souhrn
Lukasz Piwek and colleagues consider whether wearable technology can become a valuable asset for health care.
Zdroje
1. Cello Health Insight. The Digital Health Debate; 2014. http://cellohealthinsight.com/digital-health-debate/ [cited 04 Nov 2014].
2. Juniper Research. Smart Wearable Devices. Fitness, Healthcare, Entertainment & Enterprise 2013–2018.; 2013. http://www.juniperresearch.com/reports/Smart_Wearable_Devices [cited 30 Oct 2014].
3. Yang BH, Rhee S. Development of the ring sensor for healthcare automation. Robotics and Autonomous Systems. 2000;30(3):273–281.
4. Finni T, Hu M, Kettunen P, Vilavuo T, Cheng S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiological Measurement. 2007;28(11):1405–1419. 17978424
5. Sandulescu V, Andrews S, Ellis D, Bellotto N, Mozos O. Stress Detection Using Wearable Physiological Sensors. In: Ferrández Vicente JM, Álvarez Sánchez JR, de la Paz López F, Toledo-Moreo FJ, Adeli H, editors. Artificial Computation in Biology and Medicine. vol. 9107 of Lecture Notes in Computer Science. Springer International Publishing; 2015. p. 526–532.
6. Jean-Louis G, Kripke DF, Mason WJ, Elliott Ja, Youngstedt SD. Sleep estimation from wrist movement quantified by different actigraphic modalities. Journal of Neuroscience Methods. 2001;105(2):185–191. 11275275
7. Yang CC, Hsu YL. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors. 2010;10(8):7772–7788. doi: 10.3390/s100807772 22163626
8. Rollason J, Outtrim J, Mathur R. A pilot study comparing the DuoFertility monitor with ultrasound in infertile women. International Journal of Women’s Health. 2014;p. 657. doi: 10.2147/IJWH.S59080 25075200
9. Poltavski DV. The Use of Single-Electrode Wireless EEG in Biobehavioral Investigations. In: Rasooly A, Herold KE, editors. Mobile Health Technologies: Methods in Molecular Biology. Springer New York; 2015. p. 375–390.
10. Eagle N, Pentland AS, Lazer D. Inferring friendship network structure by using mobile phone data. PNAS. 2009;106(36):15274–15278. doi: 10.1073/pnas.0900282106 19706491
11. Swan M. Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. International journal of environmental research and public health. 2009;6(2):492–525. doi: 10.3390/ijerph6020492 19440396
12. Swan M. Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator Networks. 2012;1(3):217–253.
13. Harris T, Kerry SM, Victor CR, Ekelund U, Woodcock A, Iliffe S, et al. A Primary Care Nurse-Delivered Walking Intervention in Older Adults: PACE (Pedometer Accelerometer Consultation Evaluation)-Lift Cluster Randomised Controlled Trial. PLOS Med. 2015;12(2):e1001783. doi: 10.1371/journal.pmed.1001783 25689364
14. Ledger D, Partners E, Scientist B, Manager P. Inside Wearables. How the Science of Human Behavior Change. Endevour Partners; 2014. http://endeavourpartners.net/white-papers/.
15. Fogg BJ. Persuasive technology. Communications of the ACM. 1999;42(5):26–29.
16. Norman D. The Design of Everyday Things (revised and expanded edition). MIT Press; 2013.
17. Kumar A. Are experimental treatments for cancer in children superior to established treatments? Observational study of randomised controlled trials by the Children’s Oncology Group. BMJ. 2005;331(7528):1295–0. 16299015
18. Chen Z, Chen Y, Hu L, Wang S, Jiang X, Ma X, et al. ContextSense: unobtrusive discovery of incremental social context using dynamic bluetooth data. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication—UbiComp ‘14 Adjunct. Seattle, USA: ACM Press; 2014. p. 23–26.
19. McCall WV. A rest-activity biomarker to predict response to SSRIs in major depressive disorder. Journal of Psychiatric Research. 2015;64:19–22. doi: 10.1016/j.jpsychires.2015.02.023 25782717
20. Harrington J, Schramm PJ, Davies CR, Lee-Chiong TL. An electrocardiogram-based analysis evaluating sleep quality in patients with obstructive sleep apnea. Sleep and Breathing. 2013;17(3):1071–1078. doi: 10.1007/s11325-013-0804-9 23354509
21. Arora S, Venkataraman V, Donohue S, Biglan KM, Dorsey ER, Little MA. High accuracy discrimination of Parkinson’s disease participants from healthy controls using smartphones. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy: IEEE; 2014. p. 3641–3644.
22. Neville LM, O’Hara B, Milat A. Computer-tailored physical activity behavior change interventions targeting adults: a systematic review. The international journal of behavioral nutrition and physical activity. 2009;6:30. doi: 10.1186/1479-5868-6-30 19490649
23. Christensen H, Griffiths KM, Jorm AF. Delivering interventions for depression by using the internet: randomised controlled trial. BMJ. 2004;328(7434):265. 14742346
24. Carlbring P, Westling BE, Ljungstrand P, Ekselius L, Andersson G. Treatment of panic disorder via the internet: A randomized trial of a self-help program. Behavior Therapy. 2001;32(4):751–764.
25. Lange A, van de Ven JP, Schrieken B. Interapy: Treatment of Post-traumatic Stress via the Internet. Cognitive Behaviour Therapy. 2003;32(3):110–124. 16291543
26. Bartholomew LK, Gold RS, Parcel GS, Czyzewski DI, Sockrider MM, Fernandez M, et al. Watch, Discover, Think, and Act: evaluation of computer-assisted instruction to improve asthma self-management in inner-city children. Patient Education and Counseling. 2000;39(2–3):269–280. 11040726
27. Rosser BA, Vowles KE, Keogh E, Eccleston C, Mountain GA. Technologically-assisted behaviour change: a systematic review of studies of novel technologies for the management of chronic illness. Journal of telemedicine and telecare. 2009;15(7):327–38. doi: 10.1258/jtt.2009.090116 19815901
28. Carter MC, Burley VJ, Nykjaer C, Cade JE. Adherence to a smartphone application for weight loss compared to website and paper diary: pilot randomized controlled trial. Journal of medical Internet research. 2013;15(4):1–17.
29. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304. 18029834
30. Allen JK, Stephens J, Dennison Himmelfarb CR, Stewart KJ, Hauck S. Randomized controlled pilot study testing use of smartphone technology for obesity treatment. Journal of Obesity. 2013;2013:151597. doi: 10.1155/2013/151597 24392223
31. Glynn LG, Hayes PS, Casey M, Glynn F, Alvarez-Iglesias A, Newell J, et al. Effectiveness of a smartphone application to promote physical activity in primary care: the SMART MOVE randomised controlled trial. The British journal of general practice. 2014;64(624):e384–91. doi: 10.3399/bjgp14X680461 24982490
32. Clark RA, Inglis SC, McAlister FA, Cleland JGF, Stewart S. Telemonitoring or structured telephone support programmes for patients with chronic heart failure: systematic review and meta-analysis. BMJ. 2007;334(7600):942–942. 17426062
33. Pare G, Jaana M, Sicotte C. Systematic Review of Home Telemonitoring for Chronic Diseases: The Evidence Base. Journal of the American Medical Informatics Association. 2007;14(3):269–277. 17329725
34. Farmer A, Wade A, Goyder E, Yudkin P, French D, Craven A, et al. Impact of self monitoring of blood glucose in the management of patients with non-insulin treated diabetes: open parallel group randomised trial. BMJ. 2007;335(7611):132–132. 17591623
35. O’Kane MJ, Bunting B, Copeland M, Coates VE. Efficacy of self monitoring of blood glucose in patients with newly diagnosed type 2 diabetes (ESMON study): randomised controlled trial. BMJ. 2008;336(7654):1174–1177. doi: 10.1136/bmj.39534.571644.BE 18420662
36. Simon J, Gray A, Clarke P, Wade A, Neil A, Farmer A. Cost effectiveness of self monitoring of blood glucose in patients with non-insulin treated type 2 diabetes: economic evaluation of data from the DiGEM trial. BMJ. 2008;336(7654):1177–1180. doi: 10.1136/bmj.39526.674873.BE 18420663
37. Kitsiou S, Paré G, Jaana M. Systematic Reviews and Meta-Analyses of Home Telemonitoring Interventions for Patients With Chronic Diseases: A Critical Assessment of Their Methodological Quality. Journal of Medical Internet Research. 2013;15(7):e150. doi: 10.2196/jmir.2770 23880072
38. Krantz DS, Baum A, Wideman Mv. Assessment of Preferences for self-treatment and information in health care. Journal of personality and social psychology. 1980;39(5):977–90. 7441487
39. Goyder C, McPherson A, Glasziou P. Diagnosis in general practice. Self diagnosis. BMJ. 2009;339:b4418. doi: 10.1136/bmj.b4418 19906747
40. Ehrenberg A, Juckes S, White KM, Walsh SP. Personality and self-esteem as predictors of young people’s technology use. Cyberpsychology & behavior. 2008;11(6):739–41.
41. Lee JM, Kim Y, Welk GJ. Validity of consumer-based physical activity monitors. Medicine and science in sports and exercise. 2014;46(9):1840–8. doi: 10.1249/MSS.0000000000000287 24777201
42. Case MA; Burwick HA; Volpp KG; Patel M. Accuracy of Smartphone Applications and Wearable Devices for Tracking Physical Activity Data. JAMA. 2015;313(6):10–11.
43. Wolf JA, Moreau JF, Akilov O, Patton T, English JC, Ho J, et al. Diagnostic Inaccuracy of Smartphone Applications for Melanoma Detection. JAMA Dermatology. 2013;149(4):422. doi: 10.1001/jamadermatol.2013.2382 23325302
44. Venkataramanan M. My identity for sale. Wired. 2014;11:98–105.
45. Strava Labs [homepage on the Internet]; c2009-14 [cited 30 Oct 2014]. http://labs.strava.com.
46. de Montjoye YA, Hidalgo Ca, Verleysen M, Blondel VD. Unique in the Crowd: The privacy bounds of human mobility. Scientific Reports. 2013;3:1–5.
47. Lambiotte BR, Kosinski M. Tracking the Digital Footprints of Personality. In: Proceedings of the IEEE. vol. 102; 2015. p. 1934–1939.
48. Kosinski M, Stillwell D, Graepel T. Private traits and attributes are predictable from digital records of human behavior. PNAS. 2013;110(15):5802–5. doi: 10.1073/pnas.1218772110 23479631
49. Kirk S. The Wearables Revolution: Is Standardization a Help or a Hindrance?: Mainstream technology or just a passing phase? IEEE Consumer Electronics Magazine. 2014;3(4):45–50.
50. Halperin D, Heydt-Benjamin TS, Fu K, Kohno T, Maisel WH. Security and Privacy for Implantable Medical Devices. IEEE Pervasive Computing. 2008;7(1):30–39.
51. Maisel WH, Kohno T, Ph D. Improving the Security and Privacy of Implantable Medical Devices. The New England journal of medicine. 2010;362(13):1164–1166. doi: 10.1056/NEJMp1000745 20357279
52. Cortez NG, Cohen IG, Kesselheim AS. FDA Regulation of Mobile Health Technologies. The New England journal of medicine. 2014;371(4):372–379. doi: 10.1056/NEJMhle1403384 25054722
53. McCartney M. How do we know whether medical apps work? BMJ. 2013;346:f1811. doi: 10.1136/bmj.f1811 23516158
54. Apple ResearchKit [homepage on the Internet]; c2015 [cited 23 Mar 2015]. https://www.apple.com/researchkit/.
55. Patel MS, Asch Da, Volpp KG. Wearable Devices as Facilitators, Not Drivers, of Health Behavior Change. JAMA. 2015;313:459–460. doi: 10.1001/jama.2014.14781 25569175
56. Topol Eric J; Steinhubl Steven R; Torkamani A. Digital Medical Tools and Sensors. JAMA. 2015;92037:17–18.
57. Atzori L, Iera A, Morabito G. The Internet of Things: A survey. Computer Networks. 2010;54(15):2787–2805.
58. Withings [homepage on the Internet]; c2008-15 [cited 8 Jul 2015]. http://www.withings.com/uk/.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2016 Číslo 2
- Pleiotropní účinky statinů na kardiovaskulární systém
- Účinnost alirocumabu v terapii hypercholesterolémie u jedinců s vysokým kardiovaskulárním rizikem
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- Nech brouka žít… Ať žije astma!
- Intermitentní hladovění v prevenci a léčbě chorob
Najčítanejšie v tomto čísle
- Hand, Foot, and Mouth Disease in China: Modeling Epidemic Dynamics of Enterovirus Serotypes and Implications for Vaccination
- Transforming Living Kidney Donation with a Comprehensive Strategy
- A Time for Global Action: Addressing Girls’ Menstrual Hygiene Management Needs in Schools
- The Rise of Consumer Health Wearables: Promises and Barriers