Measuring Burden of Unhealthy Behaviours Using a Multivariable Predictive Approach: Life Expectancy Lost in Canada Attributable to Smoking, Alcohol, Physical Inactivity, and Diet
To address limitations of commonly used burden-of-disease measurement approaches, Douglas G. Manuel and colleagues develop, validate, and apply a multivariable predictive model for all-cause death attributable to unhealthy behaviors.
Vyšlo v časopise:
Measuring Burden of Unhealthy Behaviours Using a Multivariable Predictive Approach: Life Expectancy Lost in Canada Attributable to Smoking, Alcohol, Physical Inactivity, and Diet. PLoS Med 13(8): e32767. doi:10.1371/journal.pmed.1002082
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002082
Souhrn
To address limitations of commonly used burden-of-disease measurement approaches, Douglas G. Manuel and colleagues develop, validate, and apply a multivariable predictive model for all-cause death attributable to unhealthy behaviors.
Zdroje
1. Ford ES, Zhao G, Tsai J, Li C. Low-Risk Lifestyle Behaviors and All-Cause Mortality: Findings From the National Health and Nutrition Examination Survey III Mortality Study. American Journal of Public Health. 2011;101(10):1922. doi: 10.2105//AJPH.2011.300167 21852630
2. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380(9859):2224–60.
3. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJL, et al. The Preventable Causes of Death in the United States: Comparative Risk Assessment of Dietary, Lifestyle, and Metabolic Risk Factors. PLoS Med. 2009;6(4):e1000058. doi: 10.1371/journal.pmed.1000058 19399161
4. Levin ML, Bertell R. RE: "Simple estimation of population attributable risk from case- control studies"[letter]. American Journal of Epidemiology. 1978;108(1):78–9. 685980
5. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015. doi: 10.1016/S0140-6736(15)60692-4
6. Abdullah A, Wolfe R, Stoelwinder JU, de Courten M, Stevenson C, Walls HL, et al. The number of years lived with obesity and the risk of all-cause and cause-specific mortality. Int J Epidemiol. 2011;40(4):985–96. doi: 10.1093/ije/dyr018. 21357186.
7. Jha P, Ramasundarahettige C, Landsman V, Rostron B, Thun M. 21st-century hazards of smoking and benefits of cessation in the United States. The New England journal of medicine. 2013;368(4):341–50. doi: 10.1056/NEJMsa1211128 23343063
8. Manuel DG, Rosella LC, Hennessy D, Sanmartin C, Wilson K. Predictive risk algorithms in a population setting: an overview. J Epidemiol Community Health. 2012;66:859–65. doi: 10.1136/jech-2012-200971. 22859516.
9. Tanuseputro P, Perez R, Rosella L, Wilson K, Bennett C, Tuna M, et al. Improving the estimation of the burden of risk factors: an illustrative comparison of methods to measure smoking-attributable mortality. Population Health Metrics. 2015;13(1):5. doi: 10.1186/s12963-015-0039-z
10. Murray CJ, Ezzati M, Flaxman AD, Lim S, Lozano R, Michaud C, et al. GBD 2010: design, definitions, and metrics. Lancet. 2012;380(9859):2063–6. Epub 2012/12/19. doi: 10.1016/S0140-6736(12)61899-6. 23245602.
11. Hemingway H, Croft P, Perel P, Hayden JA, Abrams K, Timmis A, et al. Prognosis Research Strategy (PROGRESS) 1: A framework for researching clinical outcomes. BMJ. 2013;346:e5595. doi: 10.1136/bmj.e5595 23386360
12. Manuel DG, Lim J, Tanuseputro P, Anderson GM, Alter DA, Laupacis A, et al. Revisiting Rose: strategies for reducing coronary heart disease. British Medical Journal. 2006;332(7542):659–62. 16543339
13. Rose GA. The strategy of preventive medicine. Oxford; New York: Oxford University Press; 1992. xii, 138 p.
14. Tanuseputro P, Manuel DG, Schultz SE, Johansen H, Mustard CA. Improving population attributable fraction methods: examining smoking-attributable mortality for 87 geographic regions in Canada. Am J Epidemiol. 2005;161(8):787–98. Epub 2005/04/01. doi: 10.1093/aje/kwi093. 15800272.
15. James PD, Wilkins R, Detsky AS, Tugwell P, Manuel DG. Avoidable mortality by neighbourhood income in Canada: 25 years after the establishment of universal health insurance. J Epidemiol Community Health. 2007;61(4):287–96. Epub 2007/03/21. doi: 10.1136/jech.2006.047092. 17372287; PubMed Central PMCID: PMC2652935.
16. Manuel DG, Perez R, Bennett C, Rosella L, Taljaard M, Roberts M, et al. Seven More Years: The impact of smoking, alcohol, diet, physical activity and stress on health and life expectancy in Ontario. Toronto: Institute for Clinical Evaluative Sciences and Public Health Ontario, 2012.
17. Beland Y. Canadian Community Health Survey—Methodological Overview. Health Reports. 2002;13(2):9–14.
18. Bouwmeester W, Zuithoff NP, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med. 2012;9(5):1–12. Epub 2012/05/26. doi: 10.1371/journal.pmed.1001221. 22629234; PubMed Central PMCID: PMC3358324.
19. Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332(7549):1080. doi: 10.1136/bmj.332.7549.1080. 16675816; PubMed Central PMCID: PMC1458573.
20. Anderson AL, Harris TB, Tylavsky FA, Perry SE, Houston DK, Hue TF, et al. Dietary patterns and survival of older adults. Journal of the American Dietetic Association. 2011;111(1):84–91. 21185969. doi: 10.1016/j.jada.2010.10.012
21. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, et al. Alternative Dietary Indices Both Strongly Predict Risk of Chronic Disease. The Journal of Nutrition. 2012;142(6):1009–18. doi: 10.3945/jn.111.157222 22513989
22. Dauchet L, Amouyel P, Dallongeville J. Fruit and vegetable consumption and risk of stroke: a meta-analysis of cohort studies. Neurology. 2005;65(8):1193–7. Epub 2005/10/26. doi: 10.1212/01.wnl.0000180600.09719.53. 16247045.
23. Dauchet L, Montaye M, Ruidavets JB, Arveiler D, Kee F, Bingham A, et al. Association between the frequency of fruit and vegetable consumption and cardiovascular disease in male smokers and non-smokers. Eur J Clin Nutr. 2010;64(6):578–86. doi: 10.1038/ejcn.2010.46. 20354560.
24. Manuel DG, Perez R, Bennett C, Rosella L, Choi B. 900,000 Days in Hospital: The Annual Impact of Smoking, Alcohol, Diet, and Physical Activity on Hospital Use in Ontario. Toronto, ON: Institute for Clinical Evaluative Sciences, 2014.
25. Pampalon R, Raymond G. A deprivation index for health and welfare planning in Quebec. Chronic Diseases in Canada. 2000;21(3):104–13. 11082346
26. Canadian Population Health Initiative. Reducing gaps in health: A focus on socio-economic status in urban Canada. Ottawa, Ontario: Canadian Institute for Health Information (CIHI). Institut canadien d'information sur la santé; 2008.
27. Diamond GA. Future imperfect: the limitations of clinical prediction models and the limits of clinical prediction. Journal of the American College of Cardiology. 1989;14(3 Suppl A):12A–22A. 2768728
28. Tripepi G, Jager KJ, Dekker FW, Zoccali C. Statistical methods for the assessment of prognostic biomarkers(part II): calibration and re-classification. Nephrol Dial Transplant. 2010;25(5). http://dx.doi.org/10.1093/ndt/gfq046. 20167948.
29. Sarle W. The VARCLUS procedure. SAS/STAT User's Guide. Vol. 2. 4th ed. Cary NC,: SAS Institute,. p. 106–9.
30. Hoeffding W. A non-parametric test of independence. Ann Math Stat 1948;(19):546–57.
31. Cecchini M, Sassi F, Lauer JA, Lee YY, Guajardo-Barron V, Chisholm D. Tackling of unhealthy diets, physical inactivity, and obesity: health effects and cost-effectiveness. Lancet. 2010;376(9754):1775–84. Epub 2010/11/16. doi: 10.1016/S0140-6736(10)61514-0. 21074255.
32. Kremers WK. Concordance for survival time data: fixed and time-dependent covariates and possible ties in predictor and time 2007. Available from: http://cancercenter.mayo.edu/mayo/research/biostat/upload/80.pdf.
33. Harrell FE Jr. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression and Survival Analysis. Harrell FE Jr., editor. New York, NY: Springer-Verlag New York, Inc.; 2001. 1–568 p.
34. Canadian Society for Exercise Physiology. Canadian Physical Activity Guidelines 2012 [2015-07-14]. Available from: http://www.csep.ca/guidelines.
35. Health Canada. Eating Well with Canada's Food Guide 2011 [2015-07-14]. Available from: http://www.hc-sc.gc.ca/.
36. Steyerberg EW. Chapter 20: Updating for a New Setting. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. London: Springer; 2009. p. 361–6.
37. Kovacevic M, Mach L, Roberts G, editors. Bootstrap variance estimation for predicted indivdual and population-average risks. Proceedings of the Survey Research Methods Section, American Statistical Association; 2008.
38. Chiang CL. The Life Table and Its Applications. Malabar, Florida: Robert E. Krieger Publ. Co.; 1984. 1–316 p.
39. Newman SC. Formulae for cause-deleted life tables. Statistics in Medicine. 1987;6(4):527–8. 3629053
40. Manuel DG, Schultz SE, Kopec JA. Measuring the health burden of chronic disease and injury using health adjusted life expectancy and the Health Utilities Index. J Epidemiol Community Health. 2002;56(11):843–50. Epub 2002/10/22. 12388577; PubMed Central PMCID: PMC1732044.
41. Guazzelli A, Lin W-C, Jena T. PMML in Action: Unleashing the Power of Open Standards for Data Mining and Predictive Analytics: CreateSpace; 2012. 242 p.
42. Lime Survey Project. LimeSurvey—Online survey tool. 2.5 ed. http://www.limesurvey.org/.
43. Ganna A, Ingelsson E. 5 year mortality predictors in 498 103 UK Biobank participants: a prospective population-based study. The Lancet. 386(9993):533–40. doi: 10.1016/S0140-6736(15)60175-1
44. National Center for Health Statistics. 2013 National Health Interview Survey (NHIS) Public Use Data Release—Survey Description. Hyattsville, Mariland: National Center for Health Statistics and the Centres for Disease Control and Prevention, 2014 June 2014. Report No.
45. Gray L, Batty GD, Craig P, Stewart C, Whyte B, Finlayson A, et al. Cohort Profile: The Scottish Health Surveys Cohort: linkage of study participants to routinely collected records for mortality, hospital discharge, cancer and offspring birth characteristics in three nationwide studies. International Journal of Epidemiology. 2010;39(2):345–50. doi: 10.1093/ije/dyp155 19349480
46. Cook NR. Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve. Clinical chemistry. 2008;54(1):17–23. doi: 10.1373/clinchem.2007.096529. 18024533.
47. Kolata G. Risk Calculator for Cholesterol Appears Flawed. The New York Times. Nov 17, 2013.
48. Manuel DG, Rosella LC. Commentary: assessing population (baseline) risk is a cornerstone of population health planning—looking forward to address new challenges. Int J Epidemiol. 2010;39(2):380–2. Epub 2010/01/27. doi: 10.1093/ije/dyp373. 20100821; PubMed Central PMCID: PMC2846444.
49. World Health Organinzation. WHO Global Report: Mortality Attributable to Tobacco. Geneva: World Health Organization, 2012 2012. Report No.: ISBN 978 92 4 156443 4.
50. US Department of Health and Human Services. The health consequences of smoking—50 years of progress. A report of the Surgeon General. 2014.
51. Rosella LC, Manuel DG, Burchill C, Stukel TA, PHIAT-DM team. A population-based risk algorithm for the development of diabetes: development and validation of the Diabetes Population Risk Tool (DPoRT). J Epidemiol Community Health. 2011;65(7):613–20. Epub 2010/06/03. doi: 10.1136/jech.2009.102244. 20515896; PubMed Central PMCID: PMC3112365.
52. Taljaard M, Tuna M, Bennett C, Perez R, Rosella L, Tu JV, et al. Cardiovascular Disease Population Risk Tool (CVDPoRT): predictive algorithm for assessing CVD risk in the community setting. A study protocol. BMJ open. 2014;4(10):e006701. doi: 10.1136/bmjopen-2014-006701. 25341454; PubMed Central PMCID: PMC4208046.
53. Manuel D, Perez R, Bennett C, Laporte A, Wilton A, Gandhi S, et al. A $4.9 Billion Decrease in Health Care Expenditure: The Ten-Year Impact of Improving Smoking, Alcohol, Diet and Physical Activity in Ontario. Toronto, Ontario: The Institute for Clinical Evaluative Sciences, 2016 April 2016. Report No.
54. Naimi AI, Kaufman JS, MacLehose RF. Mediation misgivings: ambiguous clinical and public health interpretations of natural direct and indirect effects. International journal of epidemiology. 2014;43(5):1656–61. doi: 10.1093/ije/dyu107 24860122
55. Wacholder S. Clinical utility in evaluation of risk models. Am J Epidemiol. 2012;176(6):495–6. Epub 2012/08/10. doi: 10.1093/aje/kws255. 22875758; PubMed Central PMCID: PMC3491966.
56. Shkolnikov V, Barbieri M, Wilmoth J. The Human Mortality Database 2016 [Feburary 26, 2016]. Available from: http://www.mortality.org/.
57. Newton JN, Briggs ADM, Murray CJL, Dicker D, Foreman KJ, Wang H, et al. Changes in health in England, with analysis by English regions and areas of deprivation, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015. doi: 10.1016/s0140-6736(15)00195-6
58. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. doi: 10.1136/bmj.g7594. 25569120.
59. Wong SL, Shields M, Leatherdale S, Malaison E, Hammond D. Assessment of validity of self-reported smoking status. Health Rep. 2012;23(1):47–53. 22590805.
60. Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of Health Survey for England data. Journal of Epidemiology and Community Health. 2014;68(9):856–62. doi: 10.1136/jech-2013-203500 24687909
61. Rehm J, Patra J, Popova S. Alcohol-attributable mortality and potential years of life lost in Canada 2001: implications for prevention and policy. Addiction. 2006;101(3):373–84. 16499510
62. Hennessy D, Bennett C, Tuna M, Nadeau C, Flanagan W, Manuel D. An assessment of methods to impute risk exposure into model actor's risk profile for microsimulation. International Methodology Symposium. 2011;Conference Proceedings.
63. Liu T, Kovacevic MS. Categorical Matching and Constrained Rematching of Survey Data Files. Ottawa, Canada: Statistics Canada, 1998.
64. Shields M, Gorber SC, Janssen I, Tremblay MS. Bias in self-reported estimates of obesity in Canadian health surveys: an update on correction equations for adults. Health Reports. 2011;22(3):35–45. 22106788.
65. Kovacevic MS, Mach L, Roberts G. Bootstrap Variance Estimation for Predicted Indvidual and Population-Average Risks. Joint Statistical Meetings. 2008.
66. Robins JM, Blevins D, Ritter G, Wulfsohn M. G-Estimation of the Effect of Prophylaxis Therapy for Pneumocystis carinii Pneumonia on the Survival of AIDS Patients. Epidemiology. 1992;3(4):319–36. 1637895
67. Murray CJ, Ezzati M, Lopez AD, Rodgers A, Vander HS. Comparative quantification of health risks conceptual framework and methodological issues. Popul Health Metr. 2003;1(1):1. 12780936
68. Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550–60. 10955408
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2016 Číslo 8
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Nech brouka žít… Ať žije astma!
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
Najčítanejšie v tomto čísle
- Glycemic Control and the Risk of Tuberculosis: A Cohort Study
- Transitioning to Country Ownership of HIV Programs in Rwanda
- Dementia across the Lifespan and around the Globe—Pathophysiology, Prevention, Treatment, and Societal Impact: A Call for Papers
- Social Dancing and Incidence of Falls in Older Adults: A Cluster Randomised Controlled Trial