Evaluating Hospital-Based Surveillance for Outbreak Detection in Bangladesh: Analysis of Healthcare Utilization Data
Henrik Salje and colleagues propose a framework to examine the capacity of hospital-based surveillance data to detect public health threats in Bangladesh.
Vyšlo v časopise:
Evaluating Hospital-Based Surveillance for Outbreak Detection in Bangladesh: Analysis of Healthcare Utilization Data. PLoS Med 14(1): e32767. doi:10.1371/journal.pmed.1002218
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002218
Souhrn
Henrik Salje and colleagues propose a framework to examine the capacity of hospital-based surveillance data to detect public health threats in Bangladesh.
Zdroje
1. Gostin LO. International infectious disease law: revision of the World Health Organization’s International Health Regulations. JAMA. 2004;291(21):2623–7. doi: 10.1001/jama.291.21.2623 15173154
2. World Health Organization. International health regulations (2005). 2nd ed. Geneva: World Health Organization; 2008.
3. Garcia-Abreu A, Halperin W, Danel I. Public health surveillance toolkit. A guide for busy task managers. Washington (District of Columbia): World Bank; 2002.
4. World Health Organization. Communicable disease surveillance and response systems. Guide to monitoring and evaluating. Geneva: World Health Organization; 2006.
5. World Health Organization. WHO report on global surveillance of epidemic-prone infectious diseases. Geneva: World Health Organization; 2000.
6. Ahmed S, Sobhan F, Islam A, Barkat-e-Khuda. Neonatal morbidity and care-seeking behaviour in rural Bangladesh. J Trop Pediatr. 2001;47(2):98–105. 11336143
7. Krumkamp R, Sarpong N, Kreuels B, Ehlkes L, Loag W, Schwarz NG, et al. Health care utilization and symptom severity in Ghanaian children—a cross-sectional study. PLoS ONE. 2013;8(11):e80598. doi: 10.1371/journal.pone.0080598 24244698
8. Phiri J, Ataguba JE. Inequalities in public health care delivery in Zambia. Int J Equity Health. 2014;13:24. doi: 10.1186/1475-9276-13-24 24645826
9. Schellenberg JA, Victora CG, Mushi A, de Savigny D, Schellenberg D, Mshinda H, et al. Inequities among the very poor: health care for children in rural southern Tanzania. Lancet. 2003;361(9357):561–6. doi: 10.1016/S0140-6736(03)12515-9 12598141
10. CDC Guidelines Working Group. Updated guidelines for evaluating public health surveillance systems. Atlanta: Centers for Disease Control and Prevention; 2001.
11. CDC Working Group. Framework for evaluating public health surveillance systems for early detection of outbreaks. Atlanta: Centers for Disease Control and Prevention; 2004.
12. Ao T, Rahman M, Haque F, Chakraborty A, Hossain MJ, Haider S, et al. Low-cost national media-based surveillance system for public health events, Bangladesh. Emerg Infect Dis 2016;22(4):720–2. doi: 10.3201/eid2204.150330 26981877
13. Homaira N, Luby SP, Alamgir AS, Islam K, Paul R, Abedin J, et al. Influenza-associated mortality in 2009 in four sentinel sites in Bangladesh. Bull World Health Organ. 2012;90(4):272–8. doi: 10.2471/BLT.11.095653 22511823
14. Paul RC, Rahman M, Gurley ES, Hossain MJ, Diorditsa S, Hasan AM, et al. A novel low-cost approach to estimate the incidence of Japanese encephalitis in the catchment area of three hospitals in Bangladesh. Am J Trop Med Hyg. 2011;85(2):379–85. doi: 10.4269/ajtmh.2011.10-0706 21813862
15. Ahmed M, Mamun AA, Abedin J, Homaira N, Paul RC, Iuliano D, et al. Incidence of influenza-associated mortality in Bangladesh, 2010–12 [abstract]. Options for the Control of Influenza VIII; 5–10 Sep 2013; Cape Town, South Africa.
16. Stevens FR, Gaughan AE, Linard C, Tatem AJ. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PLoS ONE. 2015;10(2):e0107042. doi: 10.1371/journal.pone.0107042 25689585
17. QGIS Development Team. QGIS geographic information system. Version 2.12. Open Source Geospatial Foundation Project; 2015.
18. Vyas S, Kumaranayake L. Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan. 2006;21(6):459–68. doi: 10.1093/heapol/czl029 17030551
19. Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26:404–13.
20. Fefferman N, Naumova E. Innovation in observation: a vision for early outbreak detection. Emerg Health Threats J. 2010;3:e6. doi: 10.3134/ehtj.10.006 22460396
21. Efron B, Tibshirani RJ. An introduction to the bootstrap. Boca Raton (Florida): CRC Press; 1994.
22. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.
23. Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437(7056):209–14. doi: 10.1038/nature04017 16079797
24. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, et al. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis. 2009;15(8):1229–35. doi: 10.3201/eid1508.081237 19751584
25. Hossain MJ, Gurley ES, Montgomery S, Petersen L, Sejvar J, Fischer M, et al. Hospital-based surveillance for Japanese encephalitis at four sites in Bangladesh, 2003–2005. Am J Trop Med Hyg. 2010;82(2):344–9. doi: 10.4269/ajtmh.2010.09-0125 20134015
26. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science. 2000;287(5452):443–9. 10642539
27. Mari Saez A, Weiss S, Nowak K, Lapeyre V, Zimmermann F, Dux A, et al. Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Mol Med. 2015;7(1):17–23.
28. Azziz-Baumgartner E, Rahman M, Al Mamun A, Haider MS, Zaman RU, Karmakar PC, et al. Early detection of pandemic (H1N1) 2009, Bangladesh. Emerg Infect Dis. 2012;18(1):146–9. doi: 10.3201/eid1801.101996 22257637
29. WHO-CIDA Initiative. Intensifying TB case detection: update 2012—Ghana. Geneva: World Health Organization; 2012.
30. Andersson T, Bjelkmar P, Hulth A, Lindh J, Stenmark S, Widerstrom M. Syndromic surveillance for local outbreak detection and awareness: evaluating outbreak signals of acute gastroenteritis in telephone triage, web-based queries and over-the-counter pharmacy sales. Epidemiol Infect. 2014;142(2):303–13. doi: 10.1017/S0950268813001088 23672877
31. Keeling MJ, White PJ. Targeting vaccination against novel infections: risk, age and spatial structure for pandemic influenza in Great Britain. J R Soc Interface. 2011;8(58):661–70. doi: 10.1098/rsif.2010.0474 20943682
32. Wallinga J, van Boven M, Lipsitch M. Optimizing infectious disease interventions during an emerging epidemic. Proc Natl Acad Sci U S A. 2010;107(2):923–8. doi: 10.1073/pnas.0908491107 20080777
33. Tan KX, Jacob SA, Chan KG, Lee LH. An overview of the characteristics of the novel avian influenza A H7N9 virus in humans. Front Microbiol. 2015;6:140. doi: 10.3389/fmicb.2015.00140 25798131
34. Naumova EN, Parisi SM, Castronovo D, Pandita M, Wenger J, Minihan P. Pneumonia and influenza hospitalizations in elderly people with dementia. J Am Geriatr Soc. 2009;57(12):2192–9. doi: 10.1111/j.1532-5415.2009.02565.x 19874403
35. Scarpino SV, Dimitrov NB, Meyers LA. Optimizing provider recruitment for influenza surveillance networks. PLoS Comput Biol. 2012;8(4):e1002472. doi: 10.1371/journal.pcbi.1002472 22511860
36. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–3. doi: 10.1038/nature06536 18288193
37. Mor SM, DeMaria A Jr, Naumova EN. Hospitalization records as a tool for evaluating performance of food- and water-borne disease surveillance systems: a Massachusetts case study. PLoS ONE. 2014;9(4):e93744. doi: 10.1371/journal.pone.0093744 24740304
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2017 Číslo 1
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Nech brouka žít… Ať žije astma!
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
Najčítanejšie v tomto čísle
- The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight
- What Is the Purpose of the Orphan Drug Act?
- Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis
- Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study