Plasma phospholipid n-3 and n-6 polyunsaturated fatty acids in relation to cardiometabolic markers and gestational diabetes: A longitudinal study within the prospective NICHD Fetal Growth Studies
Autoři:
Yeyi Zhu aff001; Mengying Li aff003; Mohammad L. Rahman aff004; Stefanie N. Hinkle aff003; Jing Wu aff005; Natalie L. Weir aff006; Yuan Lin aff007; Huixia Yang aff008; Michael Y. Tsai aff006; Assiamira Ferrara aff001; Cuilin Zhang aff003
Působiště autorů:
Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
aff001; Department of Epidemiology & Biostatistics, University of California, San Francisco, California, United States of America
aff002; Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
aff003; Department of Population Medicine and Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, United States of America
aff004; Glotech Inc., Bethesda, Maryland, United States of America
aff005; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
aff006; Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, United States of America
aff007; Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
aff008
Vyšlo v časopise:
Plasma phospholipid n-3 and n-6 polyunsaturated fatty acids in relation to cardiometabolic markers and gestational diabetes: A longitudinal study within the prospective NICHD Fetal Growth Studies. PLoS Med 16(9): e32767. doi:10.1371/journal.pmed.1002910
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002910
Souhrn
Background
Despite dietary recommendations of polyunsaturated fatty acids (PUFAs) for cardiometabolic health, n-3 and n-6 PUFAs and their interplay in relation to diabetes risk remain debated. Importantly, data among pregnant women are scarce. We investigated individual plasma phospholipid n-3 and n-6 PUFAs in early to midpregnancy in relation to subsequent risk of gestational diabetes mellitus (GDM).
Methods and findings
Within the National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies–Singleton Cohort (n = 2,802), individual plasma phospholipid n-3 and n-6 PUFAs levels were measured at gestational weeks (GWs) 10–14, 15–26, 23–31, and 33–39 among 107 GDM cases (ascertained on average at GW 27) and 214 non-GDM controls. Conditional logistic regression was used, adjusting for major risk factors for GDM. After adjusting for covariates, individual n-3 eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) were inversely correlated with insulin-resistance markers, whereas individual n-6 dihomo-gamma-linolenic acid (DGLA) was positively correlated with insulin-resistance markers. At GW 15–26, a standard deviation (SD) increase in total n-3 PUFAs and individual n-3 DPA was associated with a 36% (adjusted odds ratio 0.64; 95% CI 0.42–0.96; P = 0.042) and 33% (0.67; 95% CI 0.45–0.99; P = 0.047) lower risk of GDM, respectively; however, the significance did not persist after post hoc false-discovery rate (FDR) correction (FDR-corrected P values > 0.05). Associations between total n-6 PUFAs and GDM were null, whereas associations with individual n-6 PUFAs were differential. Per SD increase, gamma-linolenic acid (GLA) at GWs 10–14 and DGLA at GWs 10–14 and 15–26 were significantly associated with a 1.40- to 1.95-fold higher risk of GDM, whereas docosatetraenoic acid (DTA) at GW 15–26 was associated with a 45% (0.55; 95% CI 0.37–0.83) lower risk of GDM (all FDR-corrected P values < 0.05). Null associations were observed for linoleic acid (LA) in either gestational window in relation to risk of GDM. Women with high (≥median) n-3 PUFAs and low (<median) n-6 PUFAs levels had a 64% (95% CI 0.14–0.95; P value = 0.039) lower risk of GDM versus women with low n-3 and high n-6 PUFAs. Limitations include the inability to distinguish between exogenous and endogenous influences on circulating PUFA levels and the lack of causality inherent in observational studies.
Conclusions
Our findings may suggest a potential role of primarily endogenously metabolized plasma phospholipid n-6 PUFAs including GLA, DGLA, and DTA in early to midpregnancy in the development of GDM. Null findings on primarily diet-derived n-3 EPA and DHA and n-6 LA do not provide strong evidence to suggest a beneficial role in prevention of GDM, although not excluding the potential benefit of EPA and DHA on glucose–insulin homeostasis given the inverse associations with insulin-resistance markers. Our findings highlight the importance of assessing individual circulating PUFAs to investigate their distinct pathophysiologic roles in glucose homeostasis in pregnancy.
Klíčová slova:
Biology and life sciences – Biochemistry – Anatomy – Medicine and health sciences – Physiology – Women's health – Maternal health – Obstetrics and gynecology – Endocrinology – Endocrine disorders – Metabolic disorders – Pregnancy – Lipids – Phospholipids – Fatty acids – Metabolism – Carbohydrate metabolism – Glucose metabolism – Body fluids – Blood – Blood plasma – Physiological processes – Homeostasis
Zdroje
1. Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes research and clinical practice. 2014;103(2):176–85. doi: 10.1016/j.diabres.2013.11.003 24300020
2. Ferrara A. Increasing prevalence of gestational diabetes mellitus: a public health perspective. Diabetes Care. 2007;30 Suppl 2:S141–6. doi: 10.2337/dc07-s206 17596462.
3. Zhu Y, Zhang C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a Global Perspective. Curr Diab Rep. 2016;16(1):7. doi: 10.1007/s11892-015-0699-x 26742932.
4. Duque-Guimarães DE, Ozanne SE. Nutritional programming of insulin resistance: causes and consequences. Trends in Endocrinology & Metabolism. 2013;24(10):525–35.
5. Bantle JP, Laine DC, Castle GW, Thomas JW, Hoogwerf BJ, Goetz FC. Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects. New Engl J Med. 1983;309(1):7–12. doi: 10.1056/NEJM198307073090102 6343873
6. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-κB pathway in rat liver. Diabetes. 2005;54(12):3458–65. doi: 10.2337/diabetes.54.12.3458
7. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell metabolism. 2008;7(1):45–56. doi: 10.1016/j.cmet.2007.10.013 18177724
8. Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, Kraegen EW. Influence of dietary fat composition on development of insulin resistance in rats: relationship to muscle triglyceride and ω-3 fatty acids in muscle phospholipid. Diabetes. 1991;40(2):280–9. doi: 10.2337/diab.40.2.280
9. United States Department of Health Human Services. Dietary Guidelines for Americans 2015–2020. Washington, DC: Skyhorse Publishing; 2017.
10. Eyre H, Kahn R, Robertson RM, Clark NG, Doyle C, Hong Y, et al. Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Circulation. 2004;109(25):3244–55. doi: 10.1161/01.CIR.0000133321.00456.00 15198946.
11. Akinkuolie AO, Ngwa JS, Meigs JB, Djousse L. Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials. Clinical nutrition. 2011;30(6):702–7. doi: 10.1016/j.clnu.2011.08.013 21959352.
12. Hartweg J, Perera R, Montori V, Dinneen S, Neil HA, Farmer A. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008;(1):Cd003205. doi: 10.1002/14651858.CD003205.pub2 18254017.
13. Wallin A, Di Giuseppe D, Orsini N, Patel PS, Forouhi NG, Wolk A. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes: systematic review and meta-analysis of prospective studies. Diabetes Care. 2012;35(4):918–29. doi: 10.2337/dc11-1631 22442397.
14. Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. The British journal of nutrition. 2012;107 Suppl 2:S214–27. doi: 10.1017/s0007114512001602 22591895.
15. Zheng JS, Huang T, Yang J, Fu YQ, Li D. Marine N-3 polyunsaturated fatty acids are inversely associated with risk of type 2 diabetes in Asians: a systematic review and meta-analysis. PLoS ONE. 2012;7(9):e44525. doi: 10.1371/journal.pone.0044525 22984522.
16. Xun P, He K. Fish Consumption and Incidence of Diabetes: meta-analysis of data from 438,000 individuals in 12 independent prospective cohorts with an average 11-year follow-up. Diabetes Care. 2012;35(4):930–8. doi: 10.2337/dc11-1869 22442398.
17. Imamura F, Micha R, Wu JH, de Oliveira Otto MC, Otite FO, Abioye AI, et al. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016;13(7):e1002087. doi: 10.1371/journal.pmed.1002087 27434027.
18. Wanders AJ, Blom WA, Zock PL, Geleijnse JM, Brouwer IA, Alssema M. Plant-derived polyunsaturated fatty acids and markers of glucose metabolism and insulin resistance: a meta-analysis of randomized controlled feeding trials. BMJ Open Diabetes Research and Care. 2019;7(1):e000585. doi: 10.1136/bmjdrc-2018-000585 30899527
19. Wu JHY, Marklund M, Imamura F, Tintle N, Ardisson Korat AV, de Goede J, et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. The lancet Diabetes & endocrinology. 2017;5(12):965–74. doi: 10.1016/s2213-8587(17)30307-8 29032079.
20. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med. 2014;160(6):398–406. doi: 10.7326/M13-1788 24723079.
21. Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, et al. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. Bmj. 2013;346:e8707. doi: 10.1136/bmj.e8707 23386268.
22. Farvid MS, Ding M, Pan A, Sun Q, Chiuve SE, Steffen LM, et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation. 2014;130(18):1568–78. doi: 10.1161/CIRCULATIONAHA.114.010236 25161045
23. Sprecher H, Luthria DL, Mohammed B, Baykousheva SP. Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. Journal of lipid research. 1995;36(12):2471–7. 8847474
24. Chen X, Scholl TO, Leskiw M, Savaille J, Stein TP. Differences in maternal circulating fatty acid composition and dietary fat intake in women with gestational diabetes mellitus or mild gestational hyperglycemia. Diabetes Care. 2010;33(9):2049–54. doi: 10.2337/dc10-0693 20805277.
25. Schwarz KB. Progressive decrease in plasma omega 3 and omega 6 fatty acids during pregnancy: time course and effects of dietary fats and antioxidant nutrients. Journal of nutritional & environmental medicine. 1998;8(4):335–44.
26. Buck Louis GM, Grewal J, Albert PS, Sciscione A, Wing DA, Grobman WA, et al. Racial/ethnic standards for fetal growth: the NICHD Fetal Growth Studies. Am J Obstet Gynecol. 2015;213(4):449 e1–e41. doi: 10.1016/j.ajog.2015.08.032 26410205.
27. American College of Obstetricians and Gynecologists Committee on Practice Bulletins—Obstetrics. Practice Bulletin No. 137: Gestational diabetes mellitus. Clinical management guidelines for obstetrician-gynecologists. Obstet Gynecol. 2013;122(2 Pt 1):406–16. doi: 10.1097/01.AOG.0000433006.09219.f1
28. Zhu Y, Mendola P, Albert PS, Bao W, Hinkle SN, Tsai MY, et al. Insulin-like growth factor axis and gestational diabetes: A longitudinal study in a multiracial cohort. Diabetes. 2016. doi: 10.2337/db16-0514
29. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. New Engl J Med. 2004;350(7):672–83. doi: 10.1056/NEJMoa031884 14764923
30. Levine RJ, Thadhani R, Qian C, Lam C, Lim KH, Yu KF, et al. Urinary placental growth factor and risk of preeclampsia. JAMA. 2005;293(1):77–85. doi: 10.1001/jama.293.1.77 15632339.
31. Cao J, Schwichtenberg KA, Hanson NQ, Tsai MY. Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clinical chemistry. 2006;52(12):2265–72. doi: 10.1373/clinchem.2006.072322 17053155.
32. Muthayya S, Dwarkanath P, Thomas T, Ramprakash S, Mehra R, Mhaskar A, et al. The effect of fish and omega-3 LCPUFA intake on low birth weight in Indian pregnant women. European journal of clinical nutrition. 2009;63(3):340–6. doi: 10.1038/sj.ejcn.1602933 17957193.
33. Dirix C. The functionality of maternal and neonatal fatty acids: from pregnancy to childhood [doctoral thesis]. Maastricht, the Netherlands: Maastricht University; 2009.
34. Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, et al. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study. PLoS Med. 2016;13(7):e1002094. doi: 10.1371/journal.pmed.1002094 27434045.
35. Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A. Desaturation and elongation of fatty acids and insulin action. Annals of the New York Academy of Sciences. 2002;967(1):183–95.
36. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry. 1972;18(6):499–502. 4337382.
37. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. doi: 10.1007/bf00280883 3899825.
38. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289–300.
39. Burlina S, Dalfrà M, Barison A, Marin R, Ragazzi E, Sartore G, et al. Plasma phospholipid fatty acid composition and desaturase activity in women with gestational diabetes mellitus before and after delivery. Acta diabetologica. 2017;54(1):45–51. doi: 10.1007/s00592-016-0901-x 27638302
40. Loosemore ED, Judge MP, Lammi-Keefe CJ. Dietary intake of essential and long-chain polyunsaturated fatty acids in pregnancy. Lipids. 2004;39(5):421–4. doi: 10.1007/s11745-004-1246-y 15506236.
41. Min Y, Ghebremeskel K, Lowy C, Thomas B, Crawford MA. Adverse effect of obesity on red cell membrane arachidonic and docosahexaenoic acids in gestational diabetes. Diabetologia. 2004;47(1):75–81. doi: 10.1007/s00125-003-1275-5 14634727
42. Min Y, Nam J-H, Ghebremeskel K, Kim A, Crawford M. A distinctive fatty acid profile in circulating lipids of Korean gestational diabetics: A pilot study. Diabetes research and clinical practice. 2006;73(2):178–83. https://doi.org/10.1016/j.diabres.2006.01.003. 16455150
43. Thomas B, Ghebremeskel K, Lowy C, Min Y, Crawford MA. Plasma AA and DHA levels are not compromised in newly diagnosed gestational diabetic women. European journal of clinical nutrition. 2004;58(11):1492–7. doi: 10.1038/sj.ejcn.1601996 15162132.
44. Wijendran V, Bendel RB, Couch SC, Philipson EH, Thomsen K, Zhang X, et al. Maternal plasma phospholipid polyunsaturated fatty acids in pregnancy with and without gestational diabetes mellitus: relations with maternal factors. Am J Clin Nutr. 1999;70(1):53–61. Epub 1999/07/07. doi: 10.1093/ajcn/70.1.53 10393139.
45. Fugmann M, Uhl O, Hellmuth C, Hetterich H, Kammer NN, Ferrari U, et al. Differences in the serum nonesterified fatty acid profile of young women associated with a recent history of gestational diabetes and overweight/obesity. PLoS ONE. 2015;10(5):e0128001. doi: 10.1371/journal.pone.0128001 26011768
46. Zhou SJ, Yelland L, McPhee AJ, Quinlivan J, Gibson RA, Makrides M. Fish-oil supplementation in pregnancy does not reduce the risk of gestational diabetes or preeclampsia. Am J Clin Nutr. 2012;95(6):1378–84. doi: 10.3945/ajcn.111.033217 22552037.
47. Hodge AM, English DR, O’Dea K, Sinclair AJ, Makrides M, Gibson RA, et al. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr. 2007;86(1):189–97. doi: 10.1093/ajcn/86.1.189 17616780.
48. Mozaffarian D, Lemaitre RN, King IB, Song X, Huang H, Sacks FM, et al. Plasma phospholipid long-chain ω-3 fatty acids and total and cause-specific mortality in older adults: a cohort study. Annals of internal medicine. 2013;158(7):515–25. doi: 10.7326/0003-4819-158-7-201304020-00003
49. Wilson NA, Mantzioris E, Middleton PT, Muhlhausler BS. Gestational age and maternal status of DHA and other polyunsaturated fatty acids in pregnancy: A systematic review. Prostaglandins Leukot Essent Fatty Acids. 2019;144:16–31. doi: 10.1016/j.plefa.2019.04.006 31088623.
50. National Institutes of Health. Dietary Supplement Label Database. 2015 [cited 2019 May 24]. http://www.dsld.nlm.nih.gov/dsld/.
51. U.S. Department of Agriculture Agricultural Research Service. USDA National Nutrient Database for Standard Reference Legacy Release. 2018 Apr [cited 2019 May 24]. https://ndb.nal.usda.gov/ndb/.
52. Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. The New England journal of medicine. 1993;328(4):238–44. doi: 10.1056/NEJM199301283280404 8418404.
53. Lamping KG, Nuno DW, Coppey LJ, Holmes AJ, Hu S, Oltman CL, et al. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction. Diabetes, obesity & metabolism. 2013;15(2):144–52. doi: 10.1111/dom.12004 22950668.
54. Pahlavani M, Ramalho T, Koboziev I, LeMieux MJ, Jayarathne S, Ramalingam L, et al. Adipose tissue inflammation in insulin resistance: review of mechanisms mediating anti-inflammatory effects of omega-3 polyunsaturated fatty acids. J Invest Med. 2017;65(7):1021–7.
55. Wang X, Lin H, Gu Y. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids in health and disease. 2012;11(1):25.
56. Luo P, Wang M-H. Eicosanoids, β-cell function, and diabetes. Prostaglandins & other lipid mediators. 2011;95(1–4):1–10.
57. Kroger J, Zietemann V, Enzenbach C, Weikert C, Jansen EH, Doring F, et al. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am J Clin Nutr. 2011;93(1):127–42. doi: 10.3945/ajcn.110.005447 20980488.
58. Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, et al. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation. 2009;119(6):902–7. doi: 10.1161/CIRCULATIONAHA.108.191627 19171857
59. French Food Safety Agency. Opinion of the French Food Safety Agency on the update of French population reference intakes (ANCs) for fatty acids. 2010.
60. Rett BS, Whelan J. Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: a systematic review. Nutrition & metabolism. 2011;8(1):36.
61. Zhu Y, Tsai MY, Sun Q, Hinkle SN, Rawal S, Mendola P, et al. A prospective and longitudinal study of plasma phospholipid saturated fatty acid profile in relation to cardiometabolic biomarkers and the risk of gestational diabetes. Am J Clin Nutr. 2018;107(6):1017–26. doi: 10.1093/ajcn/nqy051 29868913.
62. Hodson L, Skeaff CM, Fielding BA. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res. 2008;47(5):348–80. doi: 10.1016/j.plipres.2008.03.003 18435934.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2019 Číslo 9
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Nech brouka žít… Ať žije astma!
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
Najčítanejšie v tomto čísle
- Evaluation of approaches to strengthen civil registration and vital statistics systems: A systematic review and synthesis of policies in 25 countries
- Planned mode of delivery after previous cesarean section and short-term maternal and perinatal outcomes: A population-based record linkage cohort study in Scotland
- Effect of a scaled-up neonatal resuscitation quality improvement package on intrapartum-related mortality in Nepal: A stepped-wedge cluster randomized controlled trial
- The Fear Reduction Exercised Early (FREE) approach to management of low back pain in general practice: A pragmatic cluster-randomised controlled trial