Inositol Hexakisphosphate-Induced Autoprocessing of Large Bacterial Protein Toxins
Large bacterial protein toxins autotranslocate functional effector domains to the eukaryotic cell cytosol, resulting in alterations to cellular functions that ultimately benefit the infecting pathogen. Among these toxins, the clostridial glucosylating toxins (CGTs) produced by Gram-positive bacteria and the multifunctional-autoprocessing RTX (MARTX) toxins of Gram-negative bacteria have distinct mechanisms for effector translocation, but a shared mechanism of post-translocation autoprocessing that releases these functional domains from the large holotoxins. These toxins carry an embedded cysteine protease domain (CPD) that is activated for autoprocessing by binding inositol hexakisphosphate (InsP6), a molecule found exclusively in eukaryotic cells. Thus, InsP6-induced autoprocessing represents a unique mechanism for toxin effector delivery specifically within the target cell. This review summarizes recent studies of the structural and molecular events for activation of autoprocessing for both CGT and MARTX toxins, demonstrating both similar and potentially distinct aspects of autoprocessing among the toxins that utilize this method of activation and effector delivery.
Vyšlo v časopise:
Inositol Hexakisphosphate-Induced Autoprocessing of Large Bacterial Protein Toxins. PLoS Pathog 6(7): e32767. doi:10.1371/journal.ppat.1000942
Kategorie:
Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000942
Souhrn
Large bacterial protein toxins autotranslocate functional effector domains to the eukaryotic cell cytosol, resulting in alterations to cellular functions that ultimately benefit the infecting pathogen. Among these toxins, the clostridial glucosylating toxins (CGTs) produced by Gram-positive bacteria and the multifunctional-autoprocessing RTX (MARTX) toxins of Gram-negative bacteria have distinct mechanisms for effector translocation, but a shared mechanism of post-translocation autoprocessing that releases these functional domains from the large holotoxins. These toxins carry an embedded cysteine protease domain (CPD) that is activated for autoprocessing by binding inositol hexakisphosphate (InsP6), a molecule found exclusively in eukaryotic cells. Thus, InsP6-induced autoprocessing represents a unique mechanism for toxin effector delivery specifically within the target cell. This review summarizes recent studies of the structural and molecular events for activation of autoprocessing for both CGT and MARTX toxins, demonstrating both similar and potentially distinct aspects of autoprocessing among the toxins that utilize this method of activation and effector delivery.
Zdroje
1. WooldridgeK
2009 Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis. Norfolk, UK Caister Academic Press 511
2. MaAT
McAuleyS
PukatzkiS
MekalanosJJ
2009 Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5 234 243
3. SanchezJ
HolmgrenJ
2008 Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci 65 1347 1360
4. YoungJA
CollierRJ
2007 Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76 243 265
5. BaldwinMR
BarbieriJT
2009 Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxicon 54 570 574
6. GordonVM
LepplaSH
1994 Proteolytic activation of bacterial toxins: role of bacterial and host cell proteases. Infect Immun 62 333 340
7. BuschC
AktoriesK
2000 Microbial toxins and the glycosylation of Rho family GTPases. Curr Opin Struct Biol 10 528 535
8. von Eichel-StreiberC
BoquetP
SauerbornM
ThelestamM
1996 Large clostridial cytotoxins–a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol 4 375 382
9. BartlettJG
2002 Clinical practice. Antibiotic-associated diarrhea. N Engl J Med 346 334 339
10. LyrasD
O'ConnorJR
HowarthPM
SambolSP
CarterGP
2009 Toxin B is essential for virulence of Clostridium difficile. Nature 458 1176 1179
11. CohenAL
BhatnagarJ
ReaganS
ZaneSB
D'AngeliMA
2007 Toxic shock associated with Clostridium sordellii and Clostridium perfringens after medical and spontaneous abortion. Obstet Gynecol 110 1027 1033
12. FischerM
BhatnagarJ
GuarnerJ
ReaganS
HackerJK
2005 Fatal toxic shock syndrome associated with Clostridium sordellii after medical abortion. N Engl J Med 353 2352 2360
13. MiechRP
2005 Pathophysiology of mifepristone-induced septic shock due to Clostridium sordellii. Ann Pharmacother 39 1483 1488
14. SamlaskaCP
MaggioKL
1996 Subcutaneous emphysema. Adv Dermatol 11 117 151; discussion 152
15. BelyiY
AktoriesK
2010 Bacterial toxin and effector glycosyltransferases. Biochim Biophys Acta 1800 134 143
16. SandvigK
SpilsbergB
LauvrakSU
TorgersenML
IversenTG
2004 Pathways followed by protein toxins into cells. Int J Med Microbiol 293 483 490
17. Qa'DanM
SpyresLM
BallardJD
2000 pH-induced conformational changes in Clostridium difficile Toxin B. Infect Immun 68 2470 2474
18. BarthH
PfeiferG
HofmannF
MaierE
BenzR
2001 Low pH-induced formation of ion channels by Clostridium difficile Toxin B in target cells. J Biol Chem 276 10670 10676
19. GiesemannT
JankT
GerhardR
MaierE
JustI
2006 Cholesterol-dependent pore formation of Clostridium difficile Toxin A. J Biol Chem 281 10808 10815
20. PfeiferG
SchirmerJ
LeemhuisJ
BuschC
MeyerDK
2003 Cellular uptake of Clostridium difficile Toxin B. Translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J Biol Chem 278 44535 44541
21. JustI
SelzerJ
WilmM
von Eichel-StreiberC
MannM
1995 Glucosylation of Rho proteins by Clostridium difficile Toxin B. Nature 375 500 503
22. SatchellKJ
2007 MARTX: Multifunctional-Autoprocessing RTX Toxins. Infect Immun 75 5079 5084
23. OlivierV
HainesGK3rd
TanY
SatchellKJ
2007 Hemolysin and the multifunctional autoprocessing RTX toxin are virulence factors during intestinal infection of mice with Vibrio cholerae El Tor O1 strains. Infect Immun 75 5035 5042
24. OlivierV
QueenJ
SatchellKJ
2009 Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS ONE 4 e7352 doi:10.1371/journal.pone.0007352
25. OlivierV
SalzmanNH
SatchellKJ
2007 Prolonged colonization of mice by Vibrio cholerae El Tor O1 depends on accessory toxins. Infect Immun 75 5043 5051
26. ChungKJ
ChoEJ
KimMK
KimYR
KimSH
2010 RtxA1-induced expression of the small GTPase Rac2 plays a key role in the pathogenicity of Vibrio vulnificus. J Infect Dis 201 97 105
27. KimYR
LeeSE
KookH
YeomJA
NaHS
2008 Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol 10 848 862
28. LeeJH
KimMW
KimBS
KimSM
LeeBC
2007 Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 45 146 152
29. LiuM
AliceAF
NakaH
CrosaJH
2007 The HlyU protein is a positive regulator of rtxA1, a gene responsible for cytotoxicity and virulence in the human pathogen Vibrio vulnificus. Infect Immun 75 3282 3289
30. LeeCT
AmaroC
WuKM
ValienteE
ChangYF
2008 A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. J Bacteriol 190 1638 1648
31. LiL
RockJL
NelsonDR
2008 Identification and characterization of a repeat-in-toxin gene cluster in Vibrio anguillarum. Infect Immun 76 2620 2632
32. SeshadriR
JosephSW
ChopraAK
ShaJ
ShawJ
2006 Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol 188 8272 8282
33. PearsonMM
SebaihiaM
ChurcherC
QuailMA
SeshasayeeAS
2008 Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J Bacteriol 190 4027 4037
34. ThomsonNR
HowardS
WrenBW
HoldenMT
CrossmanL
2006 The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2 e206 doi:10.1371/journal.pgen.0020206
35. WilkinsonP
WaterfieldNR
CrossmanL
CortonC
Sanchez-ContrerasM
2009 Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 10 302
36. DuchaudE
RusniokC
FrangeulL
BuchrieserC
GivaudanA
2003 The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21 1307 1313
37. LinW
FullnerKJ
ClaytonR
SextonJA
RogersMB
1999 Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 96 1071 1076
38. CorderoCL
KudryashovDS
ReislerE
SatchellKJ
2006 The actin cross-linking domain of the Vibrio cholerae RTX toxin directly catalyzes the covalent cross-linking of actin. J Biol Chem 281 32366 32374
39. FullnerKJ
MekalanosJJ
2000 In vivo covalent crosslinking of actin by the RTX toxin of Vibrio cholerae. EMBO J 19 5315 5323
40. SheahanKL
CorderoCL
SatchellKJ
2004 Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. Proc Natl Acad Sci U S A 101 9798 9803
41. GeisslerB
BonebrakeA
SheahanKL
WalkerME
SatchellKJ
2009 Genetic determination of essential residues of the Vibrio cholerae actin cross-linking domain reveals functional similarity with glutamine synthetases. Mol Microbiol 73 858 868
42. KudryashovDS
DurerZA
YtterbergAJ
SawayaMR
PashkovI
2008 Connecting actin monomers by iso-peptide bond is a toxicity mechanism of the Vibrio cholerae MARTX toxin. Proc Natl Acad Sci U S A 105 18537 18542
43. SheahanKL
SatchellKJ
2007 Inactivation of small Rho GTPases by the multifunctional RTX toxin from Vibrio cholerae. Cell Microbiol 9 1324 1335
44. PeiJ
GrishinNV
2009 The Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold. Proteins 77 413 419
45. HenriquesB
FlorinI
ThelestamM
1987 Cellular internalisation of Clostridium difficile Toxin A. Microb Pathog 2 455 463
46. RupnikM
PabstS
RupnikM
von Eichel-StreiberC
UrlaubH
2005 Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile Toxin B (TcdB) by host cells. Microbiology 151 199 208
47. ReinekeJ
TenzerS
RupnikM
KoschinskiA
HasselmayerO
2007 Autocatalytic cleavage of Clostridium difficile Toxin B. Nature 446 415 419
48. ProchazkovaK
ShuvalovaLA
MinasovG
VoburkaZ
AndersonWF
2009 Structural and molecular mechanism for autoprocessing of MARTX Toxin of Vibrio cholerae at multiple sites. J Biol Chem 284 26557 26568
49. ShenA
LupardusPJ
AlbrowVE
GuzzettaA
PowersJC
2009 Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat Chem Biol 5 469 478
50. SheahanKL
CorderoCL
SatchellKJ
2007 Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. EMBO J 26 2552 2561
51. EgererM
GiesemannT
JankT
SatchellKJ
AktoriesK
2007 Auto-catalytic cleavage of Clostridium difficile Toxins A and B depends on cysteine protease activity. J Biol Chem 282 25314 25321
52. BarrosoLA
MoncriefJS
LyerlyDM
WilkinsTD
1994 Mutagenesis of the Clostridium difficile Toxin B gene and effect on cytotoxic activity. Microb Pathog 16 297 303
53. ProchazkovaK
SatchellKJ
2008 Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J Biol Chem 283 23656 23664
54. IrvineRF
SchellMJ
2001 Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2 327 338
55. EgererM
GiesemannT
HerrmannC
AktoriesK
2009 Autocatalytic processing of Clostridium difficile Toxin B. Binding of inositol hexakisphosphate. J Biol Chem 284 3389 3395
56. LupardusPJ
ShenA
BogyoM
GarciaKC
2008 Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322 265 268
57. PruittRN
ChagotB
CoverM
ChazinWJ
SpillerB
2009 Structure-Function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile Toxin A. J Biol Chem 284 21934 21940
58. EichingerA
BeiselHG
JacobU
HuberR
MedranoFJ
1999 Crystal structure of gingipain R: an Arg-specific bacterial cysteine proteinase with a caspase-like fold. EMBO J 18 5453 5462
59. WilsonKP
BlackJA
ThomsonJA
KimEE
GriffithJP
1994 Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370 270 275
60. ButtleDJ
SaklatvalaJ
TamaiM
BarrettAJ
1992 Inhibition of interleukin 1-stimulated cartilage proteoglycan degradation by a lipophilic inactivator of cysteine endopeptidases. Biochem J 281 (Pt 1) 175 177
61. KembhaviAA
ButtleDJ
KnightCG
BarrettAJ
1993 The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch Biochem Biophys 303 208 213
62. RawlingsND
MortonFR
KokCY
KongJ
BarrettAJ
2008 MEROPS: the peptidase database. Nucleic Acids Res 36 D320 D325
63. PeiJ
LupardusPJ
GarciaKC
GrishinNV
2009 CPDadh: a new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins. Protein Sci 18 856 862
64. JohnsonS
2009 Recurrent Clostridium difficile infection: causality and therapeutic approaches. Int J Antimicrob Agents 33 Suppl 1 S33 S36
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 7
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- RNA Virus Replication Complexes
- Virus-Infection or 5′ppp-RNA Activates Antiviral Signal through Redistribution of IPS-1 Mediated by MFN1
- Functional Genetic Diversity among Complex Clinical Isolates: Delineation of Conserved Core and Lineage-Specific Transcriptomes during Intracellular Survival
- Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites