Distinct Pathogenesis and Host Responses during Infection of by and
The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus–triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with potentially conserved roles also in mammals.
Vyšlo v časopise:
Distinct Pathogenesis and Host Responses during Infection of by and. PLoS Pathog 6(7): e32767. doi:10.1371/journal.ppat.1000982
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000982
Souhrn
The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus–triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with potentially conserved roles also in mammals.
Zdroje
1. Liévin-Le MoalV
ServinAL
2006 The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19 315 337
2. VaishnavaS
BehrendtCL
IsmailAS
EckmannL
HooperLV
2008 Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105 20858 20863
3. AkiraS
UematsuS
TakeuchiO
2006 Pathogen recognition and innate immunity. Cell 124 783 801
4. HoffmannJA
KafatosFC
JanewayCA
EzekowitzRA
1999 Phylogenetic perspectives in innate immunity. Science 284 1313 1318
5. LemaitreB
HoffmannJA
2007 The host defense of Drosophila melanogaster. Annu Rev Immunol 25 697 743
6. KurzCL
EwbankJJ
2003 Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 4 380 390
7. IrazoquiJE
NgA
XavierRJ
AusubelFM
2008 Role for beta-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions. Proc Natl Acad Sci U S A 105 17469 17474
8. ZugastiO
EwbankJJ
2009 Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-beta signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 10 249 256
9. IrazoquiJE
UrbachJM
AusubelFM
2010 Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10 47 58
10. McGheeJD
2007 The C. elegans intestine. WormBook 1 36
11. SifriCD
BegunJ
AusubelFM
2005 The worm has turned—microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol 13 119 127
12. WaterfieldNR
WrenBW
Ffrench-ConstantRH
2004 Invertebrates as a source of emerging human pathogens. Nat Rev Micro 2 833 841
13. LyczakJB
CannonCL
PierGB
2000 Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2 1051 1060
14. LyczakJB
CannonCL
PierGB
2002 Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15 194 222
15. SifriCD
AusubelFM
2004 Use of simple non-vertebrate hosts to model mammalian pathogenesis.
CossartP
BoquetP
NormarkS
RappuoliR
Cellular Microbiology. 2 ed Washington, D.C. ASM Press 543 563
16. CunyC
FriedrichA
KozytskaS
LayerF
NübelU
2009 Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol
17. SifriCD
BegunJ
AusubelFM
CalderwoodSB
2003 Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71 2208 2217
18. BoucherHW
CoreyGR
2008 Epidemiology of methicillin-resistant Staphylococcus aureus. CLIN INFECT DIS 46 Suppl 5 S344 349
19. GrahamPL
LinSX
LarsonEL
2006 A U.S. population-based survey of Staphylococcus aureus colonization. Annals of Internal Medicine 144 318 325
20. GordonRJ
LowyFD
2008 Pathogenesis of methicillin-resistant Staphylococcus aureus infection. CLIN INFECT DIS 46 Suppl 5 S350 359
21. DiepBA
OttoM
2008 The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol 16 361 369
22. NizetV
2007 Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J Allergy Clin Immunol 120 13 22
23. von Köckritz-BlickwedeM
RohdeM
OehmckeS
MillerLS
CheungAL
2008 Immunological mechanisms underlying the genetic predisposition to severe Staphylococcus aureus infection in the mouse model. Am J Pathol 173 1657 1668
24. TanMW
Mahajan-MiklosS
AusubelFM
1999 Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96 715 720
25. TanMW
RahmeLG
SternbergJA
TompkinsRG
AusubelFM
1999 Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96 2408 2413
26. GarsinDA
SifriCD
MylonakisE
QinX
SinghKV
2001 A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci USA 98 10892 10897
27. PowellJR
KimDH
AusubelFM
2009 The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response. Proc Natl Acad Sci U S A 106 2782 2787
28. GarsinDA
VillanuevaJM
BegunJ
KimDH
SifriCD
2003 Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300 1921
29. KimDH
FeinbaumR
AlloingG
EmersonFE
GarsinDA
2002 A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297 623 626
30. BegunJ
SifriCD
GoldmanS
CalderwoodSB
AusubelFM
2005 Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans-killing model. Infect Immun 73 872 877
31. BaeT
BangerAK
WallaceA
GlassEM
AslundF
2004 Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci USA 101 12312 12317
32. SkaarEP
HumayunM
BaeT
DeBordKL
SchneewindO
2004 Iron-source preference of Staphylococcus aureus infections. Science 305 1626 1628
33. Mahajan-MiklosS
TanMW
RahmeLG
AusubelFM
1999 Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96 47 56
34. DarbyC
CosmaCL
ThomasJH
ManoilC
1999 Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96 15202 15207
35. KuehnMJ
KestyNC
2005 Bacterial outer membrane vesicles and the host-pathogen interaction. Genes & Development 19 2645 2655
36. LamJ
ChanR
LamK
CostertonJW
1980 Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28 546 556
37. NaikS
SmithF
HoJ
CroftNM
DomizioP
2008 Staphylococcal enterotoxins G and I, a cause of severe but reversible neonatal enteropathy. Clin Gastroenterol Hepatol 6 251 254
38. KotlerDP
SandkovskyU
SchlievertPM
SordilloEM
2007 Toxic shock-like syndrome associated with staphylococcal enterocolitis in an HIV-infected man. CLIN INFECT DIS 44 e121 123
39. AmaralMM
CoelhoLR
FloresRP
SouzaRR
Silva-CarvalhoMC
2005 The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis 192 801 810
40. KamarasJ
MurrellWG
2001 Intestinal epithelial damage in sids babies and its similarity to that caused by bacterial toxins in the rabbit. Pathology 33 197 203
41. KamarasJ
MurrellWG
2001 The effect of bacterial enterotoxins implicated in SIDS on the rabbit intestine. Pathology 33 187 196
42. da SilvaMCA
ZahmJ-M
GrasD
BajoletO
AbelyM
2004 Dynamic interaction between airway epithelial cells and Staphylococcus aureus. Am J Physiol Lung Cell Mol Physiol 287 L543 551
43. ZetolaN
FrancisJS
NuermbergerEL
BishaiWR
2005 Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 5 275 286
44. TroemelER
ChuSW
ReinkeV
LeeSS
AusubelFM
2006 p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2 e183
45. Mashburn-WarrenL
McLeanRJC
WhiteleyM
2008 Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6 214 219
46. HodgkinJ
KuwabaraPE
CorneliussenB
2000 A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 10 1615 1618
47. NicholasHR
HodgkinJ
2004 The ERK MAP kinase cascade mediates tail swelling and a protective response to rectal infection in C. elegans. Curr Biol 14 1256 1261
48. NicholasHR
HodgkinJ
2009 The C. elegans Hox gene egl-5 is required for correct development of the hermaphrodite hindgut and for the response to rectal infection by Microbacterium nematophilum. Dev Biol 329 16 24
49. ShimodaM
OhkiK
ShimamotoY
KohashiO
1995 Morphology of defensin-treated Staphylococcus aureus. Infect Immun 63 2886 2891
50. WongD
BazopoulouD
PujolN
TavernarakisN
EwbankJJ
2007 Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol 8 R194
51. GeijtenbeekTBH
GringhuisSI
2009 Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9 465 479
52. YuY
YuY
HuangH
FengK
PanM
2007 A short-form C-type lectin from amphioxus acts as a direct microbial killing protein via interaction with peptidoglycan and glucan. J Immunol 179 8425 8434
53. CashHL
WhithamCV
BehrendtCL
HooperLV
2006 Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313 1126 1130
54. KabelitzD
MedzhitovR
2007 Innate immunity—cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Curr Opin Immunol 19 1 3
55. HuffmanDL
AbramiL
SasikR
CorbeilJ
van der GootFG
2004 Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci USA 101 10995 11000
56. Van GilstMR
HadjivassiliouH
YamamotoKR
2005 A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc Natl Acad Sci USA 102 13496 13501
57. VanceRE
IsbergRR
PortnoyDA
2009 Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host & Microbe 6 10 21
58. PujolN
LinkEM
LiuLX
KurzCL
AlloingG
2001 A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 11 809 821
59. TenorJL
AballayA
2008 A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep 9 103 109
60. TakedaK
KaishoT
AkiraS
2003 Toll-like receptors. Annu Rev Immunol 21 335 376
61. O'RourkeD
BabanD
DemidovaM
MottR
HodgkinJ
2006 Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res 16 1005 1016
62. SchulenburgH
HoeppnerMP
WeinerJ
Bornberg-BauerE
2008 Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology 213 237 250
63. SigmondT
FehérJ
BaksaA
PástiG
PálfiaZ
2008 Qualitative and quantitative characterization of autophagy in Caenorhabditis elegans by electron microscopy. Meth Enzymol 451 467 491
64. JiaK
ThomasC
AkbarM
SunQ
Adams-HuetB
2009 Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci USA 106 14564 14569
65. DereticV
2009 Multiple regulatory and effector roles of autophagy in immunity. Curr Opin Immunol 21 53 62
66. WarehamDW
PapakonstantinopoulouA
CurtisMA
2005 The Pseudomonas aeruginosa PA14 type III secretion system is expressed but not essential to virulence in the Caenorhabditis elegans-P. aeruginosa pathogenicity model. FEMS Microbiol Lett 242 209 216
67. McBroomAJ
KuehnMJ
2007 Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63 545 558
68. TroemelE
ChuS
ReinkeV
LeeS
AusubelFM
2006 p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2 e183
69. EstesKA
DunbarTL
PowellJR
AusubelFM
TroemelER
2010 bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci USA 107 2153 2158
70. MedzhitovR
2009 Approaching the asymptote: 20 years later. Immunity 30 766 775
71. VanceR
IsbergR
PortnoyD
2009 Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host & Microbe 6 10 21
72. Fernandes-AlnemriT
WuJ
YuJ-W
DattaP
MillerB
2007 The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death and Differentiation 14 1590 1604
73. VollmerW
BlanotD
de PedroMA
2008 Peptidoglycan structure and architecture. FEMS Microbiol Rev 32 149 167
74. BorjessonDL
KobayashiSD
WhitneyAR
VoyichJM
ArgueCM
2005 Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J Immunol 174 6364 6372
75. GemsD
McElweeJJ
2005 Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling? Mech Ageing Dev 126 381 387
76. DannSM
EckmannL
2007 Innate immune defenses in the intestinal tract. Curr Opin Gastroenterol 23 115 120
77. SalzetM
2001 Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol 22 285 288
78. AlperS
LawsR
LackfordB
BoydWA
DunlapP
2008 Identification of innate immunity genes and pathways using a comparative genomics approach. Proc Natl Acad Sci USA 105 7016 7021
79. MuirRE
TanMW
2008 Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: characterization of a novel host-pathogen interaction. Appl Environ Microbiol 74 4185 4198
80. PearceEL
WalshMC
CejasPJ
HarmsGM
ShenH
2009 Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460 103 107
81. AnagnostouSH
ShepherdPR
2008 Glucose induces an autocrine activation of the Wnt/beta-catenin pathway in macrophage cell lines. Biochem J 416 211 218
82. BensingerSJ
TontonozP
2008 Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454 470 477
83. FroyO
2005 Regulation of mammalian defensin expression by Toll-like receptor-dependent and independent signalling pathways. Cell Microbiol 7 1387 1397
84. EvansEA
ChenWC
TanM-W
2008 The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans. Aging Cell 7 879 893
85. WatanabeA
MiyazawaS
KitamiM
TabunokiH
UedaK
2006 Characterization of a novel C-type lectin, Bombyx mori multibinding protein, from the B. mori hemolymph: mechanism of wide-range microorganism recognition and role in immunity. J Immunol 177 4594 4604
86. YuXQ
GanH
KanostMR
1999 Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochem Mol Biol 29 585 597
87. YuX-Q
KanostMR
2004 Immulectin-2, a pattern recognition receptor that stimulates hemocyte encapsulation and melanization in the tobacco hornworm, Manduca sexta. Dev Comp Immunol 28 891 900
88. PowellJR
AusubelFM
2008 Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. Methods Mol Biol 415 403 427
89. WengL
DaiH
ZhanY
HeY
StepaniantsSB
2006 Rosetta error model for gene expression analysis. Bioinformatics 22 1111 1121
90. O'rourkeD
BabanD
DemidovaM
MottR
HodgkinJ
2006 Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Research 16 1005 1016
91. GrewalA
LambertP
StocktonJ
2007 Analysis of expression data: an overview. Current protocols in human genetics/editorial board, Jonathan L Haines [et al] Chapter 11: Unit11.14
92. Gravato-NobreMJ
NicholasHR
NijlandR
O'rourkeD
WhittingtonDE
2005 Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 171 1033 1045
93. PfafflMW
2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29 e45
94. HobertO
2002 PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. BioTechniques 32 728 730
95. TimmonsL
CourtDL
FireA
2001 Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263 103 112
96. ReboulJ
VaglioP
RualJ-F
LameschP
MartinezM
2003 C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet 34 35 41
97. RualJF
CeronJ
KorethJ
HaoT
NicotAS
2004 Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14 2162 2168
98. TusherVG
TibshiraniR
ChuG
2001 Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98 5116 5121
99. PetalcorinMIR
JoshuaGW
AgapowP-M
DolphinCT
2005 The fmo genes of Caenorhabditis elegans and C. briggsae: characterisation, gene expression and comparative genomic analysis. Gene 346 83 96
100. PauliF
LiuY
KimYA
ChenP-J
KimSK
2006 Chromosomal clustering and GATA transcriptional regulation of intestine-expressed genes in C. elegans. Development 133 287 295
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 7
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- RNA Virus Replication Complexes
- Virus-Infection or 5′ppp-RNA Activates Antiviral Signal through Redistribution of IPS-1 Mediated by MFN1
- Functional Genetic Diversity among Complex Clinical Isolates: Delineation of Conserved Core and Lineage-Specific Transcriptomes during Intracellular Survival
- Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites