#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism


The pathways that comprise cellular metabolism are highly interconnected, and alterations in individual enzymes can have far-reaching effects. As a result, global profiling methods that measure gene expression are of limited value in predicting how the loss of an individual function will affect the cell. In this work, we employed a new method of global phenotypic profiling to directly define the genes required for the growth of Mycobacterium tuberculosis. A combination of high-density mutagenesis and deep-sequencing was used to characterize the composition of complex mutant libraries exposed to different conditions. This allowed the unambiguous identification of the genes that are essential for Mtb to grow in vitro, and proved to be a significant improvement over previous approaches. To further explore functions that are required for persistence in the host, we defined the pathways necessary for the utilization of cholesterol, a critical carbon source during infection. Few of the genes we identified had previously been implicated in this adaptation by transcriptional profiling, and only a fraction were encoded in the chromosomal region known to encode sterol catabolic functions. These genes comprise an unexpectedly large percentage of those previously shown to be required for bacterial growth in mouse tissue. Thus, this single nutritional change accounts for a significant fraction of the adaption to the host. This work provides the most comprehensive genetic characterization of a sterol catabolic pathway to date, suggests putative roles for uncharacterized virulence genes, and precisely maps genes encoding potential drug targets.


Vyšlo v časopise: High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism. PLoS Pathog 7(9): e32767. doi:10.1371/journal.ppat.1002251
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002251

Souhrn

The pathways that comprise cellular metabolism are highly interconnected, and alterations in individual enzymes can have far-reaching effects. As a result, global profiling methods that measure gene expression are of limited value in predicting how the loss of an individual function will affect the cell. In this work, we employed a new method of global phenotypic profiling to directly define the genes required for the growth of Mycobacterium tuberculosis. A combination of high-density mutagenesis and deep-sequencing was used to characterize the composition of complex mutant libraries exposed to different conditions. This allowed the unambiguous identification of the genes that are essential for Mtb to grow in vitro, and proved to be a significant improvement over previous approaches. To further explore functions that are required for persistence in the host, we defined the pathways necessary for the utilization of cholesterol, a critical carbon source during infection. Few of the genes we identified had previously been implicated in this adaptation by transcriptional profiling, and only a fraction were encoded in the chromosomal region known to encode sterol catabolic functions. These genes comprise an unexpectedly large percentage of those previously shown to be required for bacterial growth in mouse tissue. Thus, this single nutritional change accounts for a significant fraction of the adaption to the host. This work provides the most comprehensive genetic characterization of a sterol catabolic pathway to date, suggests putative roles for uncharacterized virulence genes, and precisely maps genes encoding potential drug targets.


Zdroje

1. World Health Organization. Global Tuberculosis Control: Surveillance P, Financing. WHO Report. 2010 http://www.who.int/tb/publications/global_report/2010/en/index.html

2. RussellDGVanderVenBCLeeWAbramovitchRBKimMJ 2010 Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8 68 76

3. BadarinarayanaVEstepPWShendureJEdwardsJTavazoieS 2001 Selection analyses of insertional mutants using subgenic-resolution arrays. Nat Biotechnol 19 1060 1065

4. RengarajanJBloomBRRubinEJ 2005 Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102 8327 8332

5. SassettiCMBoydDHRubinEJ 2001 Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98 12712 12717

6. SassettiCMBoydDHRubinEJ 2003 Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48 77 84

7. HutchisonCAPetersonSNGillSRClineRTWhiteO 1999 Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286 2165 2169

8. JacobsMAAlwoodAThaipisuttikulISpencerDHaugenE 2003 Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100 14339 14344

9. LamichhaneGZignolMBladesNJGeimanDEDoughertyA 2003 A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 100 7213 7218

10. LampeDJChurchillMERobertsonHM 1996 A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15 5470 5479

11. RubinEJAkerleyBJNovikVNLampeDJHussonRN 1999 In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96 1645 1650

12. AkerleyBJRubinEJCamilliALampeDJRobertsonHM 1998 Systematic identification of essential genes by in vitro mariner mutagenesis. Proc Natl Acad Sci U S A 95 8927 8932

13. ChangJCMinerMDPandeyAKGillWPHarikNS 2009 igr Genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191 5232 5239

14. PandeyAKSassettiCM 2008 Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105 4376 4380

15. Van der GeizeRYamKHeuserTWilbrinkMHHaraH 2007 A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104 1947 1952

16. JoshiSMPandeyAKCapiteNFortuneSMRubinEJ 2006 Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A 103 11760 11765

17. NesbittNMYangXFontanPKolesnikovaISmithI 2009 A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78 275 282

18. BrzostekADziadekBRumijowska-GalewiczAPawelczykJDziadekJ 2007 Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. FEMS Microbiol Lett 275 106 112

19. YangXDubnauESmithISampsonNS 2007 Rv1106c from Mycobacterium tuberculosis is a 3beta-hydroxysteroid dehydrogenase. Biochemistry 46 9058 9067

20. RosloniecKZWilbrinkMHCapykJKMohnWWOstendorfM 2009 Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 74 1031 1043

21. CapykJKKalscheuerRStewartGRLiuJKwonH 2009 Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids. J Biol Chem 284 35534 35542

22. OuelletHGuanSJohnstonJBChowEDKellsPM 2010 Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. Mol Microbiol 77 730 742

23. JohnstonJBOuelletHOrtiz de MontellanoPR 2010 Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem 285 36352 36360

24. YangXNesbittNMDubnauESmithISampsonNS 2009 Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 48 3819 3821

25. GouldTAvan de LangemheenHMunoz-EliasEJMcKinneyJDSacchettiniJC 2006 Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 61 940 947

26. Munoz-EliasEJMcKinneyJD 2005 Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11 638 644

27. MicklinghoffJCBreitingerKJSchmidtMGeffersREikmannsBJ 2009 Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis. J Bacteriol 191 7260 7269

28. GallagherLAShendureJManoilC 2011 Genome-Scale Identification of Resistance Functions in Pseudomonas aeruginosa Using Tn-seq. MBio 2. MBio 18 e00315 10

29. GawronskiJDWongSMGiannoukosGWardDVAkerleyBJ 2009 Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A 106 16422 16427

30. GoodmanALMcNultyNPZhaoYLeipDMitraRD 2009 Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6 279 289

31. LangridgeGCPhanMDTurnerDJPerkinsTTPartsL 2009 Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19 2308 2316

32. van OpijnenTBodiKLCamilliA 2009 Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6 767 772

33. BraunsteinMBrownAMKurtzSJacobs WRJr 2001 Two nonredundant SecA homologues function in mycobacteria. J Bacteriol 183 6979 6990

34. ConverseSEMougousJDLeavellMDLearyJABertozziCR 2003 MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci U S A 100 6121 6126

35. MatsunagaIBhattAYoungDCChengTYEylesSJ 2004 Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J Exp Med 200 1559 1569

36. McKinneyJDHoner zu BentrupKMunoz-EliasEJMiczakAChenB 2000 Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406 735 738

37. NgVHCoxJSSousaAOMacMickingJDMcKinneyJD 2004 Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52 1291 1302

38. PrimmTPAndersenSJMizrahiVAvarbockDRubinH 2000 The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182 4889 4898

39. RodriguezGMVoskuilMIGoldB Schoolnik GK, Smith I 2002 ideR, An essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70 3371 3381

40. HuYvan der GeizeRBesraGSGurchaSSLiuA 2010 3-Ketosteroid 9alpha-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 75 107 121

41. YamKCD′AngeloIKalscheuerRZhuHWangJX 2009 Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5 e1000344

42. MarreroJRheeKYSchnappingerDPetheKEhrtS 2010 Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107 9819 9824

43. BenzimanMEizenN 1971 Pyruvate-phosphate dikinase and the control of gluconeogenesis in Acetobacter xylinum. J Biol Chem 246 57 61

44. OsterasMDriscollBTFinanTM 1997 Increased pyruvate orthophosphate dikinase activity results in an alternative gluconeogenic pathway in Rhizobium (Sinorhizobium) meliloti. Microbiology 143 (Pt 5) 1639 1648

45. YangXGaoJSmithIDubnauESampsonNS 2011 Cholesterol is not an essential source of nutrition for Mycobacterium tuberculosis during infection. J Bacteriol 193 1473 1476

46. SassettiCMRubinEJ 2003 Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100 12989 12994

47. ColeSTBroschRParkhillJGarnierTChurcherC 1998 Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [see comments] [published erratum appears in Nature 1998 Nov 12;396(6707):190]. Nature 393 537 544

48. LiRLiYKristiansenKWangJ 2008 SOAP: short oligonucleotide alignment program. Bioinformatics 24 713 714

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#