Hostile Takeover by : Reorganization of Parasite and Host Cell Membranes during Liver Stage Egress
The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.
Vyšlo v časopise:
Hostile Takeover by : Reorganization of Parasite and Host Cell Membranes during Liver Stage Egress. PLoS Pathog 7(9): e32767. doi:10.1371/journal.ppat.1002224
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002224
Souhrn
The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.
Zdroje
1. WHO 2010 Fact Sheet Malaria. WHO Media Centre Fact sheet No 94: www.who.int/mediacentre/factsheets/fs094/en/
2. SturmAAminoRvan de SandCRegenTRetzlaffS 2006 Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313 1287 1290
3. BaerKKlotzCKappeSHSchniederTFrevertU 2007 Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathog 3 e171
4. GreenwoodBMFidockDAKyleDEKappeSHAlonsoPL 2008 Malaria: progress, perils, and prospects for eradication. J Clin Invest 118 1266 1276
5. PurvesWK 1998 Life The Science of Biology. New York W.H. Freeman & Company
6. KimYEChenJChanJRLangenR 2009 Engineering a polarity-sensitive biosensor for time-lapse imaging of apoptotic processes and degeneration. Nat Methods 7 67 73
7. HelmSLehmannCNagelAStanwayRRHorstmannS 2010 Identification and characterization of a liver stage-specific promoter region of the malaria parasite Plasmodium. PLoS One 5 e13653
8. StanwayRRGraeweSRennenbergAHelmSHeusslerVT 2009 Highly efficient subcloning of rodent malaria parasites by injection of single merosomes or detached cells. Nat Protoc 4 1433 1439
9. CollinsJCWolkoffAWMorellAGStockertRJ 1988 Selective regulation of intrinsic membrane proteins in HepG2. Hepatology 8 108 115
10. RamosRRSwansonAJBassJ 2007 Calreticulin and Hsp90 stabilize the human insulin receptor and promote its mobility in the endoplasmic reticulum. Proc Natl Acad Sci U S A 104 10470 10475
11. Schneider-PoetschTJuJEylerDEDangYBhatS 2010 Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6 209 217
12. JeffreyIWBushellMTillerayVJMorleySClemensMJ 2002 Inhibition of protein synthesis in apoptosis: differential requirements by the tumor necrosis factor alpha family and a DNA-damaging agent for caspases and the double-stranded RNA-dependent protein kinase. Cancer Res 62 2272 2280
13. van de SandCHorstmannSSchmidtASturmABolteS 2005 The liver stage of Plasmodium berghei inhibits host cell apoptosis. Mol Microbiol 58 731 742
14. PartikianAOlveczkyBSwaminathanRLiYVerkmanAS 1998 Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol 140 821 829
15. StanwayRRMuellerNZobiakBGraeweSFroehlkeU 2011 Organelle segregation into Plasmodium liver stage merozoites. Cellular Microbiology in press
16. JanseCJRamesarJWatersAP 2006 High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc 1 346 356
17. SturmAGraeweSFranke-FayardBRetzlaffSBolteS 2009 Alteration of the parasite plasma membrane and the parasitophorous vacuole membrane during exo-erythrocytic development of malaria parasites. Protist 160 51 63
18. MeisJFVerhaveJPJapPHMeuwissenJH 1985 Fine structure of exoerythrocytic merozoite formation of Plasmodium berghei in rat liver. J Protozool 32 694 699
19. IshinoTBoissonBOritoYLacroixCBischoffE 2009 LISP1 is important for the egress of Plasmodium berghei parasites from liver cells. Cell Microbiol 11 1329 1339
20. MoudyRManningTJBeckersCJ 2001 The loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii. J Biol Chem 276 41492 41501
21. NagamuneKHicksLMFuxBBrossierFChiniEN 2008 Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature 451 207 210
22. KafsackBFPenaJDCoppensIRavindranSBoothroydJC 2009 Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323 530 533
23. BlackmanMJ 2008 Malarial proteases and host cell egress: an ‘emerging’ cascade. Cell Microbiol 10 1925 1934
24. YeohSO'DonnellRAKoussisKDluzewskiARAnsellKH 2007 Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131 1072 1083
25. TangHLLungHLWuKCLeAHTangHM 2008 Vimentin supports mitochondrial morphology and organization. Biochem J 410 141 146
26. FrankSGaumeBBergmann-LeitnerESLeitnerWWRobertEG 2001 The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1 515 525
27. KroemerGReedJC 2000 Mitochondrial control of cell death. Nat Med 6 513 519
28. MullerAGuntherDDuxFNaumannMMeyerTF 1999 Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J 18 339 352
29. Kozjak-PavlovicVDian-LothropEAMeineckeMKeppORossK 2009 Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis. PLoS Pathog 5 e1000629
30. BoyaPRoquesBKroemerG 2001 New EMBO members' review: viral and bacterial proteins regulating apoptosis at the mitochondrial level. Embo J 20 4325 4331
31. SavillJ 1998 Apoptosis. Phagocytic docking without shocking. Nature 392 442 443
32. ScaffidiPMisteliTBianchiME 2002 Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418 191 195
33. ShiYEvansJERockKL 2003 Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425 516 521
34. SavillJDransfieldIGregoryCHaslettC 2002 A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2 965 975
35. FadokVABrattonDLKonowalAFreedPWWestcottJY 1998 Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101 890 898
36. CvetanovicMUckerDS 2004 Innate immune discrimination of apoptotic cells: repression of proinflammatory macrophage transcription is coupled directly to specific recognition. J Immunol 172 880 889
37. OrjihAUNussenzweigRS 1979 Plasmodium berghei: suppression of antibody response to sporozoite stage by acute blood stage infection. Clin Exp Immunol 38 1 8
38. OrengoJMWongKAOcana-MorgnerCRodriguezA 2008 A Plasmodium yoelii soluble factor inhibits the phenotypic maturation of dendritic cells. Malar J 7 254
39. GraeweSRetzlaffSStruckNJanseCJHeusslerVT 2009 Going live: a comparative analysis of the suitability of the RFP derivatives RedStar, mCherry and tdTomato for intravital and in vitro live imaging of Plasmodium parasites. Biotechnol J 4 895 902
40. GuntherKTummlerMArnoldHHRidleyRGomanM 1991 An exported protein of Plasmodium falciparum is synthesized as an integral membrane protein. Mol Biochem Parasitol 46 149 157
41. AurrecoecheaC 2009 PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37 D539 543
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 9
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Hostile Takeover by : Reorganization of Parasite and Host Cell Membranes during Liver Stage Egress
- HTLV-1 Propels Thymic Human T Cell Development in “Human Immune System” Rag2 gamma c Mice
- Exploiting and Subverting Tor Signaling in the Pathogenesis of Fungi, Parasites, and Viruses
- A Viral Ubiquitin Ligase Has Substrate Preferential SUMO Targeted Ubiquitin Ligase Activity that Counteracts Intrinsic Antiviral Defence