Structural and Functional Studies on the Interaction of GspC and GspD in the Type II Secretion System
Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspCHR) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspCHR adopts an all-β topology. N-terminal β-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC–GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspCHR–GspDN0 interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed.
Vyšlo v časopise:
Structural and Functional Studies on the Interaction of GspC and GspD in the Type II Secretion System. PLoS Pathog 7(9): e32767. doi:10.1371/journal.ppat.1002228
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002228
Souhrn
Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspCHR) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspCHR adopts an all-β topology. N-terminal β-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC–GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspCHR–GspDN0 interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed.
Zdroje
1. SandkvistM 2001 Type II secretion and pathogenesis. Infect Immun 69 3523 3535
2. CianciottoNP 2005 Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13 581 588
3. DebRoySDaoJSoderbergMRossierOCianciottoNP 2006 Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A 103 19146 19151
4. SikoraAEZielkeRALawrenceDAAndrewsPCSandkvistM 2011 Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins including three related serine proteases. J Biol Chem 286 16555 16566
5. SandkvistMMichelLOHoughLPMoralesVMBagdasarianM 1997 General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J Bacteriol 179 6994 7003
6. TauschekMGorrellRJStrugnellRARobins-BrowneRM 2002 Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci U S A 99 7066 7071
7. HirstTRHolmgrenJ 1987 Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae. Proc Natl Acad Sci U S A 84 7418 7422
8. FillouxA 2004 The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694 163 179
9. JohnsonTLAbendrothJHolWGJSandkvistM 2006 Type II secretion: from structure to function. FEMS Microbiol Lett 255 175 186
10. KorotkovKVGonenTHolWGJ 2011 Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci 36 433 443
11. OpalkaNBeckmannRBoissetNSimonMNRusselM 2003 Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J Mol Biol 325 461 470
12. CollinsRFFordRCKitmittoAOlsenROTonjumT 2003 Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J Bacteriol 185 2611 2617
13. JainSMoscickaKBBosMPPachulecEStuartMC 2011 Structural characterization of outer membrane components of the type IV pili system in pathogenic Neisseria. PLoS One 6 e16624
14. BurkhardtJVonckJAverhoffB 2011 Structure and function of PilQ, a secretin of the DNA transporter from the thermophilic bacterium Thermus thermophilus HB27. J Biol Chem 286 9977 9984
15. HodgkinsonJLHorsleyAStabatDSimonMJohnsonS 2009 Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat Struct Mol Biol 16 477 485
16. SchraidtOMarlovitsTC 2011 Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 331 1192 1195
17. PeabodyCRChungYJYenMRVidal-IngigliardiDPugsleyAP 2003 Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149 3051 3072
18. AyersMHowellPLBurrowsLL 2010 Architecture of the type II secretion and type IV pilus machineries. Future Microbiol 5 1203 1218
19. ChamiMGuilvoutIGregoriniMRemigyHWMullerSA 2005 Structural insights into the secretin PulD and its trypsin-resistant core. J Biol Chem 280 37732 37741
20. ReichowSLKorotkovKVHolWGJGonenT 2010 Structure of the cholera toxin secretion channel in its closed state. Nat Struct Mol Biol 17 1226 1232
21. BrokRVan GelderPWinterhalterMZieseUKosterAJ 1999 The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. J Mol Biol 294 1169 1179
22. GuilvoutIChamiMEngelAPugsleyAPBayanN 2006 Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J 25 5241 5249
23. GuilvoutIChamiMBerrierCGhaziAEngelA 2008 In vitro multimerization and membrane insertion of bacterial outer membrane secretin PulD. J Mol Biol 382 13 23
24. KorotkovKVPardonESteyaertJHolWGJ 2009 Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17 255 265
25. LamAYPardonEKorotkovKVHolWGJSteyaertJ 2009 Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. J Struct Biol 166 8 15
26. WuMParkYJPardonETurleySHayhurstA 2011 Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies. J Struct Biol 174 124 136
27. RasmussenSGChoiHJFungJJPardonECasarosaP 2011 Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469 175 180
28. Garcia-HerreroAVogelHJ 2005 Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli. Mol Microbiol 58 1226 1237
29. LeimanPGBaslerMRamagopalUABonannoJBSauderJM 2009 Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106 4154 4159
30. NakanoNKuboriTKinoshitaMImadaKNagaiH 2010 Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog 6 e1001129
31. SouzaDPAndradeMOAlvarez-MartinezCEArantesGMFarahCS 2011 A Component of the Xanthomonadaceae Type IV Secretion System Combines a VirB7 Motif with a N0 Domain Found in Outer Membrane Transport Proteins. PLoS Pathog 7 e1002031
32. KanamaruSLeimanPGKostyuchenkoVAChipmanPRMesyanzhinovVV 2002 Structure of the cell-puncturing device of bacteriophage T4. Nature 415 553 557
33. ValverdeREdwardsLReganL 2008 Structure and function of KH domains. FEBS J 275 2712 2726
34. ShevchikVERobert-BaudouyJCondemineG 1997 Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J 16 3007 3016
35. Gerard-VincentMRobertVBallGBlevesSMichelGP 2002 Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol Microbiol 44 1651 1665
36. BlevesSGerard-VincentMLazdunskiAFillouxA 1999 Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J Bacteriol 181 4012 4019
37. LeeHMWangKCLiuYLYewHYChenLY 2000 Association of the cytoplasmic membrane protein XpsN with the outer membrane protein XpsD in the type II protein secretion apparatus of Xanthomonas campestris pv. Campestris. J Bacteriol 182 1549 1557
38. KorotkovKVKrummBBagdasarianMHolWGJ 2006 Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J Mol Biol 363 311 321
39. LybargerSRJohnsonTLGrayMDSikoraAESandkvistM 2009 Docking and assembly of the type II secretion complex of Vibrio cholerae. J Bacteriol 191 3149 3161
40. LoginFHFriesMWangXPickersgillRWShevchikVE 2010 A 20-residue peptide of the inner membrane protein OutC mediates interaction with two distinct sites of the outer membrane secretin OutD and is essential for the functional type II secretion system in Erwinia chrysanthemi. Mol Microbiol 76 944 955
41. SilvaggiNRMartinLJSchwalbeHImperialiBAllenKN 2007 Double-lanthanide-binding tags for macromolecular crystallographic structure determination. J Am Chem Soc 129 7114 7120
42. GolovanovAPBalasinghamSTzitzilonisCGoultBTLianLY 2006 The solution structure of a domain from the Neisseria meningitidis lipoprotein PilP reveals a new beta-sandwich fold. J Mol Biol 364 186 195
43. KabschWSanderC 1983 Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22 2577 2637
44. KrissinelEHenrickK 2007 Inference of macromolecular assemblies from crystalline state. J Mol Biol 372 774 797
45. RemautHWaksmanG 2006 Protein-protein interaction through β-strand addition. Trends Biochem Sci 31 436 444
46. LindebergMSalmondGPCCollmerA 1996 Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of species-specific secretion of proteins via the type II pathway. Mol Microbiol 20 175 190
47. PossotOMVignonGBomchilNEbelFPugsleyAP 2000 Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J Bacteriol 182 2142 2152
48. JoblingMGHolmesRK 2000 Identification of motifs in cholera toxin A1 polypeptide that are required for its interaction with human ADP-ribosylation factor 6 in a bacterial two-hybrid system. Proc Natl Acad Sci U S A 97 14662 14667
49. SpreterTYipCKSanowarSAndreIKimbroughTG 2009 A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat Struct Mol Biol 16 468 476
50. CambergJLJohnsonTLPatrickMAbendrothJHolWGJ 2007 Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J 26 19 27
51. PatrickMKorotkovKVHolWGJSandkvistM 2011 Oligomerization of EpsE coordinates residues from multiple subunits to facilitate ATPase activity. J Biol Chem 286 10378 10386
52. AbendrothJMurphyPSandkvistMBagdasarianMHolWGJ 2005 The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol 348 845 855
53. AyersMSampaleanuLMTammamSKooJHarveyH 2009 PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin. J Mol Biol 394 128 142
54. SampaleanuLMBonannoJBAyersMKooJTammamS 2009 Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J Mol Biol 394 143 159
55. AbendrothJRiceAEMcLuskeyKBagdasarianMHolWGJ 2004 The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J Mol Biol 338 585 596
56. O'NealCJAmayaEIJoblingMGHolmesRKHolWGJ 2004 Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism. Biochemistry 43 3772 3782
57. ReichowSLKorotkovKVGonenMSunJdela RosaJ 2011 The binding of cholera toxin to the periplasmic vestibule of the type II secretion channel. Channels 5 215 218
58. BouleyJCondemineGShevchikVE 2001 The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J Mol Biol 308 205 219
59. GuilvoutIHardieKRSauvonnetNPugsleyAP 1999 Genetic dissection of the outer membrane secretin PulD: Are there distinct domains for multimerization and secretion specificity? J Bacteriol 181 7212 7220
60. KlockHEKoesemaEJKnuthMWLesleySA 2008 Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins 71 982 994
61. BarthelmesKReynoldsAMPeisachEJonkerHRDeNunzioNJ 2011 Engineering encodable lanthanide-binding tags into loop regions of proteins. J Am Chem Soc 133 808 819
62. DengJDaviesDRWisedchaisriGWuMHolWGJ 2004 An improved protocol for rapid freezing of protein samples for long-term storage. Acta Crystallogr D Biol Crystallogr 60 203 204
63. van DuyneGDStandaertRFKarplusPASchreiberSLClardyJ 1993 Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 229 105 124
64. KabschW 2010 Xds. Acta Crystallogr D Biol Crystallogr 66 125 132
65. McCoyAJGrosse-KunstleveRWAdamsPDWinnMDStoroniLC 2007 Phaser crystallographic software. J Appl Cryst 40 658 674
66. SpinelliSFrenkenLGHermansPVerripsTBrownK 2000 Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry 39 1217 1222
67. ZhangY 2008 I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9 40
68. CowtanK 2008 Fitting molecular fragments into electron density. Acta Crystallogr D Biol Crystallogr 64 83 89
69. EmsleyPCowtanK 2004 Coot: model-building tools for molecular graphics. Acta Crystallogr, Sect D: Biol Crystallogr 60 2126 2132
70. KorotkovKVGrayMDKregerATurleySSandkvistM 2009 Calcium is essential for the major pseudopilin in the type 2 secretion system. J Biol Chem 284 25466 25470
71. MurshudovGNVaginAADodsonEJ 1997 Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr, Sect D: Biol Crystallogr 53 240 255
72. PainterJMerrittEA 2006 Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D Biol Crystallogr 62 439 450
73. ChenVBArendallWB3rdHeaddJJKeedyDAImmorminoRM 2010 MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66 12 21
74. HolmLRosenstromP 2010 Dali server: conservation mapping in 3D. Nucleic Acids Res 38 W545 549
75. BakerNASeptDJosephSHolstMJMcCammonJA 2001 Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98 10037 10041
76. Schrodinger, LLC 2010 The PyMOL Molecular Graphics System, Version 1.3r1
77. HortonRMCaiZLHoSNPeaseLR 1990 Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8 528 535
78. SikoraAELybargerSRSandkvistM 2007 Compromised outer membrane integrity in Vibrio cholerae type II secretion mutants. J Bacteriol 189 8484 8495
79. ArnoldKBordoliLKoppJSchwedeT 2006 The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22 195 201
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 9
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Hostile Takeover by : Reorganization of Parasite and Host Cell Membranes during Liver Stage Egress
- HTLV-1 Propels Thymic Human T Cell Development in “Human Immune System” Rag2 gamma c Mice
- Exploiting and Subverting Tor Signaling in the Pathogenesis of Fungi, Parasites, and Viruses
- A Viral Ubiquitin Ligase Has Substrate Preferential SUMO Targeted Ubiquitin Ligase Activity that Counteracts Intrinsic Antiviral Defence