#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Targeting of a Chlamydial Protease Impedes Intracellular Bacterial Growth


Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.


Vyšlo v časopise: Targeting of a Chlamydial Protease Impedes Intracellular Bacterial Growth. PLoS Pathog 7(9): e32767. doi:10.1371/journal.ppat.1002283
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002283

Souhrn

Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.


Zdroje

1. SchachterJ 1999 Infection and disease epidemiology. StephensRS Chlamydia: Intracellular Biology, Pathogenesis, and Immunity Washington, D.C. ASM Press 39

2. ThyleforsBNegrelADPararajasegaramRDadzieKY 1995 Global data on blindness. Bull World Health Organ 73 115

3. GerbaseACRowleyJTMertensTE 1998 Global epidemiology of sexually transmitted diseases. Lancet 351 Suppl 3 2 4

4. CampbellLAKuoCC 2004 Chlamydia pneumoniae--an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2 23 32

5. MoulderJW 1991 Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55 143 190

6. HackstadtTScidmoreMARockeyDD 1995 Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A 92 4877 4881

7. ScidmoreMAFischerERHackstadtT 1996 Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 134 363 374

8. HackstadtTRockeyDDHeinzenRAScidmoreMA 1996 Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. Embo J 15 964 977

9. ValdiviaRH 2008 Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol 11 53 59

10. SubtilADelevoyeCBalanaMETastevinLPerrinetS 2005 A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol Microbiol 56 1636 1647

11. PetersJWilsonDPMyersGTimmsPBavoilPM 2007 Type III secretion a la Chlamydia. Trends Microbiol 15 241 251

12. ZhongGFanPJiHDongFHuangY 2001 Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 193 935 942

13. ZhongG 2009 Killing me softly: chlamydial use of proteolysis for evading host defenses. Trends Microbiol 17 467 474

14. HeuerDLipinskiARMachuyNKarlasAWehrensA 2009 Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457 731 735

15. Rejman LipinskiAHeymannJMeissnerCKarlasABrinkmannV 2009 Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog 5 e1000615

16. Abdul-SaterAAKooEHackerGOjciusDM 2009 Inflammasome-dependent caspase-1 activation in cervical epithelial cells stimulates growth of the intracellular pathogen Chlamydia trachomatis. J Biol Chem 284 26789 26796

17. HeuerDBrinkmannVMeyerTFSzczepekAJ 2003 Expression and translocation of chlamydial protease during acute and persistent infection of the epithelial HEp-2 cells with Chlamydophila (Chlamydia) pneumoniae. Cell Microbiol 5 315 322

18. PaschenSAChristianJGVierJSchmidtFWalchA 2008 Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease. J Cell Biol 182 117 127

19. FanTLuHHuHShiLMcClartyGA 1998 Inhibition of Apoptosis in Chlamydia-infected Cells: Blockade of Mitochondrial Cytochrome c Release and Caspase Activation. J Exp Med 187 487 496

20. HuangZFengYChenDWuXHuangS 2008 Structural basis for activation and inhibition of the secreted chlamydia protease CPAF. Cell Host Microbe 4 529 542

21. DongFPirbhaiMZhongYZhongG 2004 Cleavage-dependent activation of a chlamydia-secreted protease. Mol Microbiol 52 1487 1494

22. DongFSuHHuangYZhongYZhongG 2004 Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect Immun 72 3863 3868

23. HornM 2008 Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62 113 131

24. HornMCollingroASchmitz-EsserSBeierCLPurkholdU 2004 Illuminating the evolutionary history of chlamydiae. Science 304 728 730

25. GreubG 2009 Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clin Microbiol Infect 15 18 28

26. BeattyWL 2006 Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J Cell Sci 119 350 359

27. WyrickPB 2010 Chlamydia trachomatis persistence in vitro: an overview. J Infect Dis 201 Suppl 2 S88 95

28. BunkSSusneaIRuppJSummersgillJTMaassM 2008 Immunoproteomic Identification and Serological Responses to Novel Chlamydia pneumoniae Antigens That Are Associated with Persistent C. pneumoniae Infections. J Immunol 180 5490 5498

29. RuppJSolbachWGieffersJ 2006 Single-nucleotide-polymorphism-specific PCR for quantification and discrimination of Chlamydia pneumoniae genotypes by use of a “locked” nucleic acid. Appl Environ Microbiol 72 3785 3787

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#