#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Plague and Climate: Scales Matter


Plague is enzootic in wildlife populations of small mammals in central and eastern Asia, Africa, South and North America, and has been recognized recently as a reemerging threat to humans. Its causative agent Yersinia pestis relies on wild rodent hosts and flea vectors for its maintenance in nature. Climate influences all three components (i.e., bacteria, vectors, and hosts) of the plague system and is a likely factor to explain some of plague's variability from small and regional to large scales. Here, we review effects of climate variables on plague hosts and vectors from individual or population scales to studies on the whole plague system at a large scale. Upscaled versions of small-scale processes are often invoked to explain plague variability in time and space at larger scales, presumably because similar scale-independent mechanisms underlie these relationships. This linearity assumption is discussed in the light of recent research that suggests some of its limitations.


Vyšlo v časopise: Plague and Climate: Scales Matter. PLoS Pathog 7(9): e32767. doi:10.1371/journal.ppat.1002160
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002160

Souhrn

Plague is enzootic in wildlife populations of small mammals in central and eastern Asia, Africa, South and North America, and has been recognized recently as a reemerging threat to humans. Its causative agent Yersinia pestis relies on wild rodent hosts and flea vectors for its maintenance in nature. Climate influences all three components (i.e., bacteria, vectors, and hosts) of the plague system and is a likely factor to explain some of plague's variability from small and regional to large scales. Here, we review effects of climate variables on plague hosts and vectors from individual or population scales to studies on the whole plague system at a large scale. Upscaled versions of small-scale processes are often invoked to explain plague variability in time and space at larger scales, presumably because similar scale-independent mechanisms underlie these relationships. This linearity assumption is discussed in the light of recent research that suggests some of its limitations.


Zdroje

1. StensethNCAtshabarBBBegonMBlemainSRBertheratE 2008 Plague: past, present and future. PloS Med 5 e3 doi:10.1371/journal.pmed.0050003

2. CatanachIJ 2001 The “globalization” of disease? India and the plague. Journal of World History 12 131 153

3. RogersL 1928 The yearly variations in plague in India in relation to climate: forecasting epidemics. Proc Roy Soc Ser B 103 42 72

4. DavisDH 1953 Plague in Africa from 1935 to 1949; a survey of wild rodents in African territories. Bull World Health Organ 5 665 700

5. CavanaughDCMarshallJD 1972 The influence of climate on the seasonal prevalence of plague in the Republic of Vietnam. J Wildl Dis 8 85 94

6. CavanaughDDangerfieldHHunterDJoyRMarshallJDJ 1968 Some observations on the current plague outbreak in the Republic of Vietnam. Am J Public Health Nations 58 742 752

7. MeservePLYungerJAGutiérrezJRContrerasLCMilsteadWB 1995 Heterogeneous responses of small mammals to an El Niño Southern Oscillation event in north central semiarid Chile and the importance of ecological scale. J Mammal 76 580 595

8. GublerDJReiterPEbiKLYapWNasciR 2001 Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Persp 109 223 33

9. KrasnovBRKhokhlovaISFieldenLJBurdelovaNV 2001 Effect of air temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). J Med Entomol 38 629 37

10. KrasnovBRKhokhlovaISFieldenLJBurdelovaNV 2001 Development rates of two Xenopsylla flea species in relation to air temperature and humidity. Med Vet Entomol 15 249 258

11. KrasnovBRBurdelovaNVShenbrotGIKhokhlovaIS 2002 Annual cycles of four flea species in the central Negev desert. Med Vet Entomol 16 266 276

12. GageKLBurkotTREisenRJHayesEB 2008 Climate and vector-borne diseases. Am J Prev Med 35 436 50

13. GageKLBurkotTREisenRJHayesEB 2008 Climate and vector-borne diseases. Am J Prev Med 35 436 50

14. BacotAWMartinCJ 1924 The respective influence of temperature and moisture upon the survival of the rat flea. J Hyg 23 98 105

15. CavanaughDC 1971 Specific effect of temperature upon transmission of the plague bacillus by the oriental rat flea, Xenopsylla Cheopis. J Trop Med Hyg 20 264 273

16. EisenRJGageKL 2009 Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet Res 40 01

17. ParmenterRRYadavEPParmenterCAEttestadPGageKL 1999 Incidence of plague associated with increased winter-spring precipitation in New Mexico. Am J Trop Med Hyg 61 814 821

18. MeservePLMilsteadWBGutierrezJR 2001 Results of a food addition experiment in a north-central Chile small mammal assemblage: evidence for the role of “bottom-up” factors. Oïkos 94 548 556

19. LetnicMTamayoBDickmanCR 2005 The responses of mammals to La Nina (El Nino Southern Oscillation) associated rainfall, predation, and wildfire in central Australia 86 689 703

20. JaksicFMLimaM 2003 Myths and facts on ratadas: bamboo blooms, rainfall peaks and rodent outbreaks in South America. Aust J Ecol 28 237 251

21. LimaMJaksicFM 1999 Population rate of change in the leaf-eared mouse: the role of density-dependence, seasonality and rainfall. Aust J Ecol 24 110 116

22. LimaMKeymerJEJaksicFM 1999 El Nino-southern oscillation-driven rainfall variability and delayed density dependence cause rodent outbreaks in western South America: linking demography and population dynamics. Am Nat 153 476 491

23. LimaMMarquetPAJaksicFM 1999 El Nino events, precipitation patterns, and rodent outbreaks are statistically associated in semiarid Chile. Ecography 22 213 218

24. LeirsHVerhagenRVerheyenWMwanjabePMbiseT 1996 Forecasting rodent outbreaks in Africa: an ecological basis for Mastomys control in Tanzania. J Appl Ecol 33 937 943

25. DickmanCRHaythornthwaiteASMcNaughtGHMahonPSTamayoB 2001 Population dynamics of three species of dasyurid marsupials in arid central Australia: a 10-year study. Wildl Res 28 493 506

26. MillsJN 2005 Regulation of rodent-borne viruses in the natural host: implications for human disease. Arch Virol 19 45 57

27. BrownJHMorgan ErnestSK 2002 Rain and rodents: complex dynamics of desert consumers. Bioscience 52 979 987

28. KorslundLSteenH 2006 Small rodent winter survival: snow conditions limit access to food resources. J Anim Ecol 75 156 166

29. BazanovaLPNikitinAYPopkovAFMaevskiiMP 2007 Seasonal peculiarities of plague agent (Yersinia pestis) transmission to the long-tailed suslik by fleas (Citellophilus tesquorum) in Tuva [in Russian]. Zoologichesky Zhurnal 86 846 852

30. BaltazardMBahmanyarM 1960 Research on plague in India. Bull World Health Organ 23 169 215

31. MacchiavelloA 1946 A focus of sylvatic plague on the Peruvian-Ecuadorian frontier. Science 104 522

32. KilonzoBSMvenaZSMachanguRSMbiseTJ 1997 Preliminary observations on factors responsible for long persistence and continued outbreaks of plague in Lushoto district, Tanzania. Acta tropica 68 215 27

33. WHO (World Health Organization) 2008 Interregional meeting on prevention and control of plague. Antananarivo, Madagascar 7–11 April 2006. 1–65. Available: http://www.who.int/csr/resources/publications/WHO_HSE_EPR_2008_3w.pdf. Accessed 16 August 2011

34. NeerinckxSBPetersonATGulinckHDeckersJLeirsH 2008 Geographic distribution and ecological niche of plague in sub-Saharan Africa. Int J Health Geogr 7 54

35. PrenticeMBRahalisonL 2007 Plague. Lancet 369 1196 1207

36. DennisDTGageKLGratzNGPolandJDTikhomirovE 1999 Plague manual: epidemiology, distribution, surveillance and control. Bull World Health Organ 1 171

37. PerryRDFetherstonJD 1997 Yersinia pestis - etiologic agent of plague. Clin Microbiol Rev 10 35 66

38. GageKLKosoyMY 2005 Natural history of plague: perspectives from more than a century of research. Ann Rev Entomol 50 505 28

39. BarnesA 1982 Surveillance and control of bubonic plague in the United States. Symp Zool Soc Lond 50 237 270

40. DavalosVATorresMAMauricciCOLaguna-TorresVAChinarroMP 2001 Outbreak of bubonic plague in Jacocha, Huancabamba, Peru. Rev Soc Bras Med Trop 34 87 90

41. StappPAntolinMFBallM 2004 Patterns of extinction in prairie dog metapopulations: plague outbreaks follow El Ninño events. Front Ecol Environ 2 235 240

42. Ben AriTGershunovAGageKLSnällTEttestadP 2008 Human plague in the USA: the importance of regional and local climate. Biol lett 4 737 740

43. PollitzerR 1954 Plague. World Health Organization monograph series number 22. Geneva World Health Organization 698

44. ParmenterRRYadavEPParmenterCEttestadPGageKL 1999 Incidence of plague associated with increased winter-spring precipitation in New Mexico. Am J Trop Med Hyg 61 814 821

45. EnscoreREBiggerstaffBJBrownTLFulghamREReynoldsPJ 2002 Modeling relationships between climate and the frequency of human plague cases in the southwestern United States, 1960-1997. Am J Trop Med Hyg 66 186 196

46. Ben AriTGershunovATristanRCazellesBGageK 2010 Interannual variability of human plague occurrence in the Western United States explained by tropical and North Pacific Ocean climate variability. Am J Trop Med Hyg 83 624 632

47. ZhangZLiZTaoYChenMWenX 2007 Relationship between increase rate of human plague in China and global climate index as revealed by cross-spectral and cross-wavelet analyses. Int Zool 2 144 153

48. KausrudKLViljugreinHFrigessiABegonMDavisS 2007 Climatically driven synchrony of gerbil populations allows large-scale plague outbreaks. P Roy Soc B-Biol Sci 274 1963 1969

49. LonganeckerDSBurroughsAL 1952 Studies of the microclimate of the California ground squirrel burrow and its relation to seasonal changes in the flea population. 33 488 499

50. SumberaRChitaukaliWNElichovaMKubovaJBurdaH 2004 Microclimatic stability in burrows of an Afrotropical solitary bathyergid rodent, the silvery mole-rat (Heliophobius argenteocinereus). J Zool 263 409 416

51. HallLOMyersK 1978 Variations in the microclimate in rabbit warrens in semi-arid New South Wales. Aust J Ecol 3 187 194

52. Osacar-JimenezJJLucientes-CurdiJCalvete-MargolleC 2001 Abiotic factors influencing the ecology of wild rabbit fleas in north-eastern Spain. Med Vet Entomol 15 157 66

53. HaasGE 1965 Comparative suitability of the four murine rodents of Hawaii as hosts for Xenopsylla vexabilis and X. cheopis (Siphonaptera). J Med Entomol 275-83

54. ShenbrotGKrasnovBKhokhlovaIDemidovaTFieldenL 2002 Habitat-dependent differences in architecture and microclimate of the burrows of Sundevall's jird (Meriones crassus) (Rodentia: Gerbillinae) in the Negev Desert, Israel. J Arid Environ 51 265 279

55. RyckmanRE 1971 Plague vector studies. II. The role of climatic factors in determining seasonal fluctuations of flea species associated with the California ground squirrel. J Med Entomol 8 541 549

56. KleinJM 1966 Donnees ecologiques et biologiques sur Synopsyllus fonquerniei, puce de rat peridomestique dans la region de Tanarive [In French]. Cahiers Orstom Entomologie medicale 4 3 29

57. KleinJMUilenbergG 1966 Donnees faunistiques et ecologiques sur les puces de Madagascar (Siphonaptera) [In French]. Cahiers Orstom Entomologie 16 31 60

58. ChanteauS 2006 Atlas de la peste a Madagascar. Paris IRD Editions

59. KrasnovBKhokhlovaIFieldenLBurdelovaNV 2002 The effect of substrate on survival and development of two species of desert fleas (Siphonaptera: Pulicidae). Parasite 9 135 142

60. AdjemianJCZGirvetzEHBeckettLFoleyJE 2006 Analysis of Genetic Algorithm for Rule-Set Production (GARP) modeling approach for predicting distributions of fleas implicated as vectors of plague, Yersinia pestis, in California. J Med Entomol 43 93 103

61. IPPC IP onCC 2007 Climate Change 2007: the physical science basis - summary for policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva IPPC

62. NeerinckxSPetersonATGulinckHDeckersSKimaroD 2010 Predicting potential risk areas of human plague for the Western Usambara mountains, Lushoto district, Tanzania. Am J Trop Med Hyg 82 492 500

63. DavisSCalvetELeirsH 2005 Fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vect Born Zoo Dis 5 305 314

64. MillsJNKsiazekTGPetersCJChildsJE 1999 Long-term studies of hantavirus reservoir populations in the southwestern United States: a synthesis. Emerg Infect Dis 5 135 42

65. CollingeSKJohnsonWCRayCMatchettRGrenstenJ 2005 Testing the generality of a trophic-cascade model for plague. EcoHealth 2 102 112

66. StappP 2007 Trophic cascades and disease ecology. EcoHealth 4 121 124

67. StensethNCSamiaNIViljugreinHKausrudKLBegonM 2006 Plague dynamics are driven by climate variation. Proc Natl Acad Sci U S A 103 13110 13115

68. HarvellCDMitchellCEWardJRAltizerSDobsonAP 2002 Climate warming and disease risks for terrestrial and marine biota. Science 296 2158 2162

69. NakazawaYWilliamsRPetersonATMeadPStaplesE 2007 Climate change effects on plague and tularemia in the United States. Vect Born Zoo Dis 7 529 540

70. SnallTBenestadREStensethNC 2009 Expected future plague levels in a wildlife host under different scenarios of climate change. Glob Change Biol 15 500 507

71. DavisSTrapmanPLeirsHBegonMHeesterbeekJAP 2008 The abundance threshold for plague as a critical percolation phenomenon. Nature 454 635 637

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#