#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Pathogenic Yeasts Deploy Cell Surface Receptors to Acquire Iron in Vertebrate Hosts


article has not abstract


Vyšlo v časopise: Pathogenic Yeasts Deploy Cell Surface Receptors to Acquire Iron in Vertebrate Hosts. PLoS Pathog 9(8): e32767. doi:10.1371/journal.ppat.1003498
Kategorie: Pearls
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003498

Souhrn

article has not abstract


Zdroje

1. BrownGD, DenningDW, GowNA, LevitzSM, NeteaMG, et al. (2012) Hidden killers: human fungal infections. Sci Transl Med 4: 165rv13 doi:10.1126/scitranslmed.3004404

2. JohnsonEE, Wessling-ResnickM (2012) Iron metabolism and the innate immune response to infection. Microbes Infect 14: 207–216.

3. FoleyTL, SimeonovA (2012) Targeting iron assimilation to develop new antibacterials. Expert Opin Drug Discov 7: 831–847.

4. MöllmannU, HeinischL, BauernfeindA, KöhlerT, Ankel-FuchsD (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22: 615–624.

5. SchaibleUE, KaufmannSH (2004) Iron and microbial infection. Nat Rev Microbiol 2: 946–953.

6. SutakR, LesuisseE, TachezyJ, RichardsonDR (2008) Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16: 261–268.

7. JungWH, KronstadJW (2008) Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell Microbiol 10: 277–284.

8. AlmeidaRS, WilsonD, HubeB (2009) Candida albicans iron acquisition within the host. FEMS Yeast Res 9: 1000–1012.

9. KornitzerD (2009) Fungal mechanisms for host iron acquisition. Curr Opin Microbiol 12: 377–83.

10. LiuY, FillerSG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10: 168–173.

11. NobileCJ, AndesDR, NettJE, SmithFJJr, YueF, et al. (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2: e63 doi:10.1371/journal.ppat.0020063

12. FanningS, XuW, SolisN, WoolfordCA, FillerSG, et al. (2012) Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot Cell 11: 896–904.

13. FinkelJS, MitchellAP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9: 109–118.

14. NobileCJ, SolisN, MyersCL, FayAJ, DeneaultJS, et al. (2008) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10: 2180–2196.

15. AlmeidaRS, BrunkeS, AlbrechtA, ThewesS, LaueM, et al. (2008) The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4: e1000217 doi:10.1371/journal.ppat.1000217

16. HeilmannCJ, SorgoAG, KlisFM (2012) News from the fungal front: wall proteome dynamics and host–pathogen interplay. PLoS Pathog 8: e1003050 doi:10.1371/journal.ppat.1003050

17. WeissmanZ, KornitzerD (2004) A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53: 1209–1220.

18. WeissmanZ, ShemerR, ConibearE, KornitzerD (2008) An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol 69: 201–217.

19. BraunBR, HeadWS, WangMX, JohnsonAD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156: 31–44.

20. PérezA, PedrósB, MurguiA, CasanovaM, López-RibotJL, et al. (2006) Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res 6: 1074–1084.

21. PérezA, RamageG, BlanesR, MurguiA, CasanovaM, et al. (2011) Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain. FEMS Yeast Res 11: 273–284.

22. DingC, VidanesGM, MaguireSL, GuidaA, SynnottJM, et al. (2011) Conserved and divergent roles of Bcr1 and CFEM proteins in Candida parapsilosis and Candida albicans. PLoS ONE 6: e28151 doi:10.1371/journal.pone.0028151

23. LianTS, SimmerMI, D'SouzaCA, SteenBR, ZuyderduynSD, et al. (2005) Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 55: 1452–1472.

24. BiondoC, MancusoG, MidiriA, BombaciM, MessinaL, et al. (2006) Identification of major proteins secreted by Cryptococcus neoformans. FEMS Yeast Res 6: 645–651.

25. VecchiarelliA (2000) Immunoregulation by capsular components of Cryptococcus neoformans. Med Mycol 38: 407–417.

26. VartivarianSE, AnaissieEJ, CowartRE, SpriggHA, TinglerMJ, et al. (1993) Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis 167: 186–190.

27. CadieuxB, LianT, HuG, WangJ, BiondoC, et al. (2013) The mannoprotein Cig1 supports iron acquisition from heme and virulence in the pathogenic fungus Cryptococcus neoformans. J Infect Dis 207: 1339–1347.

28. O'MearaTR, NortonD, PriceMS, HayC, ClementsMF, et al. (2010) Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 6: e1000776 doi:10.1371/journal.ppat.1000776

29. StojiljkovicI, KumarV, SrinivasanN (1999) Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol Microbiol 31: 429–442.

30. HuG, CazaM, CadieuxB, ChanV, LiuV, et al. (2013) Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect Immun 81: 292–302.

31. O'MearaTR, HolmerSM, SelvigK, DietrichF, AlspaughJA (2013) Cryptococcus neoformans Rim101 is associated with cell wall remodeling and evasion of the host immune responses. mBio 4: e00522–12 doi:10.1128/mBio.00522-12

32. BaninE, VasilML, GreenbergEP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102: 11076–11081.

33. VediyappanG, RossignolT, d'EnfertC (2010) Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 54: 2096–2111.

34. NettJE, SanchezH, CainMT, AndesDR (2010) Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis 202: 171–175.

35. RobertsonEJ, WolfJM, CasadevallA (2012) EDTA inhibits biofilm formation, extracellular vesicular secretion, and shedding of the capsular polysaccharide glucuronoxylomannan by Cryptococcus neoformans. Appl Environ Microbiol 78: 7977–7984.

36. TaffHT, NettJE, ZarnowskiR, RossKM, SanchezH, et al. (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8: e1002848 doi:10.1371/journal.ppat.1002848

37. KumarP, YangM, HaynesBC, SkowyraML, DoeringTL (2011) Emerging themes in cryptococcal capsule synthesis. Curr Opin Struct Biol 21: 597–602.

38. HameedS, PrasadT, BanerjeeD, ChandraA, MukhopadhyayCK, et al. (2008) Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. FEMS Yeast Res 8: 744–755.

39. MochonAB, JinY, KayalaMA, WingardJR, ClancyCJ, et al. (2010) Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog 6: e1000827 doi:10.1371/journal.ppat.1000827

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#