#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Asparagine Repeats in Proteins: Good for Nothing?


article has not abstract


Vyšlo v časopise: Asparagine Repeats in Proteins: Good for Nothing?. PLoS Pathog 9(8): e32767. doi:10.1371/journal.ppat.1003488
Kategorie: Pearls
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003488

Souhrn

article has not abstract


Zdroje

1. CibulskisRE, AregawiM, WilliamsR, OttenM, DyeC (2011) Worldwide incidence of malaria in 2009: estimates, time trends, and a critique of methods. PLoS Med 8: e1001142 doi:10.1371/journal.pmed.1001142

2. GardnerMJ, HallN, FungE, WhiteO, BerrimanM, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511.

3. AravindL, IyerLM, WellemsTE, MillerLH (2003) Plasmodium biology: genomic gleanings. Cell 115: 771–785.

4. KempDJ, CoppelRL, AndersRF (1987) Repetitive proteins and genes of malaria. Annu Rev Microbiol 41: 181–208.

5. WoottonJC (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18: 269–285.

6. EichingerL, PachebatJA, GlöcknerG, RajandreamMA, SucgangR, et al. (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435: 43–57.

7. SinghGP, ChandraBR, BhattacharyaA, AkhouriRR, SinghSK, et al. (2004) Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Mol Biochem Parasitol 137: 307–319.

8. ZilversmitMM, VolkmanSK, DePristoMA, WirthDF, AwadallaP, et al. (2010) Low-complexity regions in Plasmodium falciparum: missing links in the evolution of an extreme genome. Mol Biol Evol 27: 2198–2209.

9. HalfmannR, AlbertiS, KrishnanR, LyleN, O'DonnellCW, et al. (2011) Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Mol Cell 43: 72–84.

10. AlbertiS, HalfmannR, KingO, KapilaA, LindquistS (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137: 146–158.

11. FowlerDM, KoulovAV, BalchWE, KellyJW (2007) Functional amyloid – from bacteria to humans. Trends Biochem Sci 32: 217–224.

12. ChitiF, DobsonCM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333–366.

13. PatinoMM, LiuJJ, GloverJR, LindquistS (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273: 622–626.

14. SiK, ChoiY-B, White-GrindleyE, MajumdarA, KandelER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140: 421–435.

15. HouF, SunL, ZhengH, SkaugB, JiangQ-X, et al. (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146: 448–461.

16. OlzschaH, SchermannSM, WoernerAC, PinkertS, HechtMH, et al. (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144: 67–78.

17. SeuringC, GreenwaldJ, WasmerC, WepfR, SaupeSJ, et al. (2012) The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 10: e1001451 doi:10.1371/journal.pbio.1001451

18. MuralidharanV, OksmanA, PalP, LindquistS, GoldbergDE (2012) Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 3: 1310.

19. FrugierM, BourT, AyachM, SantosMAS, Rudinger-ThirionJ, et al. (2010) Low complexity regions behave as tRNA sponges to help co-translational folding of plasmodial proteins. FEBS Lett 584: 448–454.

20. VerraF, HughesAL (1999) Biased amino acid composition in repeat regions of Plasmodium antigens. Mol Biol Evol 16: 627–633.

21. HughesAL (2004) The evolution of amino acid repeat arrays in Plasmodium and other organisms. J Mol Evol 59: 528–535.

22. KarlinS, BrocchieriL, BergmanA, MrazekJ, GentlesAJ (2002) Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A 99: 333–338.

23. MuralidharanV, OksmanA, IwamotoM, WandlessTJ, GoldbergDE (2011) Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag. Proc Natl Acad Sci U S A 108: 4411–4416 doi:10.1073/pnas.1018449108

24. XueHY, ForsdykeDR (2003) Low-complexity segments in Plasmodium falciparum proteins are primarily nucleic acid level adaptations. Mol Biochem Parasitol 128: 21–32.

25. AndersonTJC, PatelJ, FerdigMT (2009) Gene copy number and malaria biology. Trends Parasitol 25: 336–343.

26. DalbyAR (2009) A comparative proteomic analysis of the simple amino acid repeat distributions in Plasmodia reveals lineage specific amino acid selection. PLoS ONE 4: e6231 doi:10.1371/journal.pone.0006231

27. RutherfordSL, LindquistS (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#