Relevance of Trehalose in Pathogenicity: Some General Rules, Yet Many Exceptions
article has not abstract
Vyšlo v časopise:
Relevance of Trehalose in Pathogenicity: Some General Rules, Yet Many Exceptions. PLoS Pathog 9(8): e32767. doi:10.1371/journal.ppat.1003447
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003447
Souhrn
article has not abstract
Zdroje
1. IturriagaG, SuarezR, Nova-FrancoB (2009) Trehalose metabolism: from osmoprotection to signalling. Int J Mol Sci 10: 3793–3810.
2. AvonceN, Mendoza-VargasA, MorettE, IturriagaG (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6: 109.
3. MurphyHN, StewartGR, MIschenkoVV, AptAS, HarrisR, et al. (2005) The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 280: 14524–14529.
4. FreemanBC, ChenC, BeattieGA (2010) Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ Microbiol 12: 1486–1497.
5. DjonovićS, UrbachJM, DrenkardE, BushJ, FeinbaumR, et al. (2013) Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog 9: e1003217 doi:10.1371/journal.ppat.1003217
6. ZaragozaO, BlazquezMA, GancedoC (1998) Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J Bacteriol 180: 3809–3815.
7. FosterAJ, JenkinsonJM, TalbotNJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J 22: 225–235.
8. LoweRG, LordM, RybakK, TrengoveRD, OliverRP, et al. (2009) Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum. Fungal Genet Biol 46: 381–389.
9. PetzoldEW, HimmelreichU, MylonakisE, RudeT, ToffalettiD, et al. (2006) Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect Immun 74: 5877–5887.
10. NgamskulrungrojP, HimmelreichU, BregerJA, WilsonC, ChayakulkeereeM, et al. (2009) The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infect Immun 77: 4584–4596.
11. Al-BaderN, VanierG, LiuH, GravelatFN, UrbM, et al. (2010) Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 78: 3007–3018.
12. PuttikamonkulS, WillgerSD, GrahlN, PerfectJR, MovahedN, et al. (2010) Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pahogen Aspegillus fumigatus. Mol Microbiol 77: 891–911.
13. WoodruffPJ, CarlsonBL, SiridechadilokB, PrattMR, SenaratneRH, et al. (2004) Trehalose is required for growth of Mycobacterium smegmatis. J Biol Chem 279: 28835–28843.
14. WolfA, KramerR, MorbachS (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49: 1119–1134.
15. TzvetkovM, KlopproggeC, ZelderO, LieblW (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149: 1659–1673.
16. FillingerS, ChaverocheMK, van DijckP, de VriesR, RuijterG, et al. (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147: 1851–1862.
17. HarveyPC, WatsonM, HulmeS, JonesMA, LovellM, et al. (2011) Salmonella enterica serovar typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect Immun 79: 4105–4121.
18. WilsonRA, JenkinsonJM, GibsonRP, LittlechildJA, WangZY, et al. (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. Embo J 26: 3673–3685.
19. WilsonRA, GibsonRP, QuispeCF, LittlechildJA, TalbotNJ (2010) An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc Natl Acad Sci U S A 107: 21902–21907.
20. SerneelsJ, TournuH, Van DijckP (2012) Tight control of trehalose content is required for efficient heat-induced cell elongation in Candida albicans. J Biol Chem 287: 36873–36882.
21. Gonzalez-ParragaP, Sanchez-FresnedaR, ZaragozaO, ArguellesJC (2011) Amphotericin B induces trehalose synthesis and simultaneously activates an antioxidant enzymatic response in Candida albicans. Biochim Biophys Acta 1810: 777–783.
22. KalscheuerR, WeinrickB, VeeraraghavanU, BesraGS, JacobsWRJr (2010) Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107: 21761–21766.
23. PilonietaMC, NagyTA, JorgensenDR, DetweilerCS (2012) A glycine betaine importer limits Salmonella stress resistance and tissue colonization by reducing trehalose production. Mol Microbiol 84: 296–309.
24. BehrendsV, RyallB, ZlosnikJE, SpeertDP, BundyJG, et al. (2013) Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections. Environ Microbiol 15: 398–408.
25. WuM-C, LinT-L, HsiehP-F, YangH-C, WangJ-T (2011) Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS ONE 6: e23500 doi:10.1371/journal.pone.0023500
26. PedrenoY, Gonzalez-ParragaP, Martinez-EsparzaM, SentandreuR, ValentinE, et al. (2007) Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resistance to oxidative stress. Microbiology 153: 1372–1381.
27. ZhuZ, WangH, ShangQ, JiangY, CaoY, et al. (2012) Time course analysis of Candida albicans metabolites during biofilm development. J Proteome Res 12: 2375–2385.
28. HunterRL, ArmitigeL, JagannathC, ActorJK (2009) TB research at UT-Houston–a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb) 89 Suppl 1: S18–25.
29. Lopez-MarinLM (2012) Nonprotein structure from Mycobacteria: emerging actors for tuberculosis control. Clin Develop Immunol 2012: 917860.
30. IshikawaE, IshikawaT, MoritaYS, ToyonagaK, YamadaH, et al. (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206: 2879–2888.
31. Trevino-VillarrealJH, Vera-CabreraL, Valero-GuillenPL, Salinas-CarmonaMC (2012) Nocardia brasiliensis cell wall lipids modulate macrophage and dendritic responses that favor development of experimental actinomycetoma in BALB/c mice. Infect Immun 80: 3587–3601.
32. SwartsBM, HolsclawCM, JewettJC, AlberM, FoxDM, et al. (2012) Probing the mycobacterial trehalome with bioorthogonal chemistry. J Am Chem Soc 134: 16123–16126.
33. KalscheuerR, SysonK, VeeraraghavanU, WeinrickB, BiermannKE, et al. (2010) Self-poisoning of Mycobacterium tuberculosis by targeting GlgE ina alpha-glucan pathway. Nat Chem Biol 6: 376–384.
34. ColeST, EiglmeierK, ParkhillJ, JamesKD, ThomsonNR, et al. (2001) Massive gene decay in the leprosy bacillus. Nature 409: 1007–1011.
35. StrømAR, KaasenI (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8: 205–210.
36. HowellsAM, BullifentHL, DhaliwalK, GriffinK, Garcia de CastroA, et al. (2002) Role of trehalose biosynthesis in environmental survival and virulence of Salmonella enterica serovar typhimurium. Res Microbiol 153: 281–287.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 8
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Host Immune Response to Intestinal Amebiasis
- Bed Bugs and Infectious Disease: A Case for the Arboviruses
- Discovery of Anthelmintic Drug Targets and Drugs Using Chokepoints in Nematode Metabolic Pathways
- Relevance of Trehalose in Pathogenicity: Some General Rules, Yet Many Exceptions