Insights into Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria
Vibrio cholerae is a highly motile bacterium that causes the diarrheal disease cholera. Despite our extensive knowledge of the genes and processes that enable this non-invasive pathogen to colonize the small intestine, there is limited knowledge of the pathogen's fine localization within the intestine. Here, we used fluorescence microscopy-based techniques to directly monitor where and how fluorescent V. cholerae localize along intestinal villi in infected infant mice. This approach enabled us to uncover previously unappreciated features of V. cholerae intestinal colonization. We found that most V. cholerae microcolonies appear to arise from single cells attached to the epithelium. Unexpectedly, we observed considerable differences between V. cholerae fine localization in different parts of the small intestine and found that V. cholerae motility exerts a regiospecific influence on colonization. The abundance of intestinal mucins appears to be an important factor explaining at least some of the regiospecific aspects of V. cholerae intestinal localization. Overall, our findings suggest that direct observation of fluorescent pathogens during infection, coupled with genetic and/or pharmacologic manipulations of pathogen and host processes, adds a valuable depth to understanding of host-pathogen interactions.
Vyšlo v časopise:
Insights into Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria. PLoS Pathog 10(10): e32767. doi:10.1371/journal.ppat.1004405
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004405
Souhrn
Vibrio cholerae is a highly motile bacterium that causes the diarrheal disease cholera. Despite our extensive knowledge of the genes and processes that enable this non-invasive pathogen to colonize the small intestine, there is limited knowledge of the pathogen's fine localization within the intestine. Here, we used fluorescence microscopy-based techniques to directly monitor where and how fluorescent V. cholerae localize along intestinal villi in infected infant mice. This approach enabled us to uncover previously unappreciated features of V. cholerae intestinal colonization. We found that most V. cholerae microcolonies appear to arise from single cells attached to the epithelium. Unexpectedly, we observed considerable differences between V. cholerae fine localization in different parts of the small intestine and found that V. cholerae motility exerts a regiospecific influence on colonization. The abundance of intestinal mucins appears to be an important factor explaining at least some of the regiospecific aspects of V. cholerae intestinal localization. Overall, our findings suggest that direct observation of fluorescent pathogens during infection, coupled with genetic and/or pharmacologic manipulations of pathogen and host processes, adds a valuable depth to understanding of host-pathogen interactions.
Zdroje
1. HarrisJB, LaRocqueRC, QadriF, RyanET, CalderwoodSB (2012) Cholera. Lancet 379: 2466–2476.
2. SánchezJ, HolmgrenJ (2008) Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci 65: 1347–1360.
3. KimseyHH, WaldorMK (1998) CTXΦ immunity: application in the development of cholera vaccines. Proc Natl Acad Sci USA 95: 7035–7039.
4. TaylorRK, MillerVL, FurlongDB, MekalanosJJ (1987) Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84: 2833–2837.
5. HerringtonDA, HallRH, LosonskyG, MekalanosJJ, TaylorRK, et al. (1988) Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168: 1487–1492.
6. KrebsSJ, TaylorRK (2011) Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J Bacteriol 193: 5260–5270.
7. BinaXR, ProvenzanoD, NguyenN, BinaJE (2008) Vibrio cholerae RND Family Efflux Systems Are Required for Antimicrobial Resistance, Optimal Virulence Factor Production, and Colonization of the Infant Mouse Small Intestine. Infect Immun 76: 3595–3605.
8. MerrellDS, HavaDL, CamilliA (2002) Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 43: 1471–1491.
9. FuY, WaldorMK, MekalanosJJ (2013) Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host Microbe 14: 652–663.
10. KampHD, Patimalla-DipaliB, LazinskiDW, Wallace-GadsdenF, CamilliA (2013) Gene Fitness Landscapes of Vibrio cholerae at Important Stages of Its Life Cycle. PLoS Pathog 9: e1003800.
11. RitchieJM, WaldorMK (2009) Vibrio cholerae interactions with the gastrointestinal tract: lessons from animal studies. Curr Top Microbiol Immunol 337: 37–59.
12. GuentzelM, BerryL (1975) Motility as a virulence factor for Vibrio cholerae. Infect Immun 11: 890–897.
13. LeeSH, ButlerSM, CamilliA (2001) Selection for in vivo regulators of bacterial virulence. Proc Natl Acad Sci USA 98: 6889–6894.
14. GosinkKK, KobayashiR, KawagishiI, HäseCC (2002) Analyses of the Roles of the Three cheA Homologs in Chemotaxis of Vibrio cholerae. J Bacteriol 184: 1767–1771.
15. HyakutakeA, HommaM, AustinMJ, BoinMA, HaseCC, et al. (2005) Only one of the five CheY homologs in Vibrio cholerae directly switches flagellar rotation. J Bacteriol 187: 8403–8410.
16. FreterR, O'BrienPC (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice. Infect Immun 34: 222–233.
17. ButlerSM, CamilliA (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc Natl Acad Sci USA 101: 5018–5023.
18. ButlerSM, CamilliA (2005) Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat Rev Microbiol 3: 611–620.
19. SpagnuoloAM, DiritaV, KirschnerD (2011) A model for Vibrio cholerae colonization of the human intestine. J Theor Biol 289: 247–258.
20. JohanssonME, SjovallH, HanssonGC (2013) The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 10: 352–361.
21. McGuckinMA, LindenSK, SuttonP, FlorinTH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9: 265–278.
22. AngelichioMJ, SpectorJ, WaldorMK, CamilliA (1999) Vibrio cholerae intestinal population dynamics in the suckling mouse model of infection. Infect Immun 67: 3733–3739.
23. NielsenAT, DolganovNA, OttoG, MillerMC, WuCY, et al. (2006) RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2: e109.
24. RitchieJM, RuiH, BronsonRT, WaldorMK (2010) Back to the future: studying cholera pathogenesis using infant rabbits. MBio 1: e00047–10..
25. ItzkovitzS, BlatIC, JacksT, CleversH, van OudenaardenA (2012) Optimality in the development of intestinal crypts. Cell 148: 608–619.
26. OuelletteAJ, SelstedME (1996) Paneth cell defensins: endogenous peptide components of intestinal host defense. Faseb J 10: 1280–1289.
27. BhavanandanVP, KatlicAW (1979) The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem 254: 4000–4008.
28. JohanssonME, HanssonGC (2012) Preservation of mucus in histological sections, immunostaining of mucins in fixed tissue, and localization of bacteria with FISH. Methods Mol Biol 842: 229–235.
29. LaurianoCM, GhoshC, CorreaNE, KloseKE (2004) The Sodium-Driven Flagellar Motor Controls Exopolysaccharide Expression in Vibrio cholerae. J Bacteriol 186: 4864–4874.
30. WatnickPI, LaurianoCM, KloseKE, CroalL, KolterR (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39: 223–235.
31. GuentzelMN, FieldLH, EubanksER, BerryLJ (1977) Use of fluorescent antibody in studies of immunity to cholera in infant mice. Infect Immun 15: 539–548.
32. RuiH, RitchieJM, BronsonRT, MekalanosJJ, ZhangY, et al. (2010) Reactogenicity of live-attenuated Vibrio cholerae vaccines is dependent on flagellins. Proc Natl Acad Sci USA 107: 4359–4364.
33. GardelCL, MekalanosJJ (1996) Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64: 2246–2255.
34. FreterR, O'BrienPC, MacsaiMS (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect Immun 34: 234–240.
35. De LisleRC, RoachE, JanssonK (2007) Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol 293: G577–584.
36. RushworthGF, MegsonIL (2014) Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther 141: 150–159.
37. BrownII, HäseCC (2001) Flagellum-independent surface migration of Vibrio cholerae and Escherichia coli. J Bacteriol 183: 3784–3790.
38. LiuZ, MiyashiroT, TsouA, HsiaoA, GoulianM, et al. (2008) Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing. Proc Natl Acad Sci USA 105: 9769–9774.
39. SzabadyRL, YantaJH, HalladinDK, SchofieldMJ, WelchRA (2011) TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology 157: 516–525.
40. Almagro-MorenoS, BoydEF (2009) Sialic Acid Catabolism Confers a Competitive Advantage to Pathogenic Vibrio cholerae in the Mouse Intestine. Infect Immun 77: 3807–3816.
41. ChieppaM, RescignoM, HuangAY, GermainRN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203: 2841–2852.
42. FaracheJ, KorenI, MiloI, GurevichI, KimKW, et al. (2013) Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38: 581–595.
43. RinggaardS, SchirnerK, DavisBM, WaldorMK (2011) A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. Genes Dev 25: 1544–1555.
44. HatziosSK, RinggaardS, DavisBM, WaldorMK (2012) Studies of dynamic protein-protein interactions in bacteria using Renilla luciferase complementation are undermined by nonspecific enzyme inhibition. PLoS One 7: e43175.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 10
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Novel Cyclic di-GMP Effectors of the YajQ Protein Family Control Bacterial Virulence
- MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to
- The ESAT-6 Protein of Interacts with Beta-2-Microglobulin (β2M) Affecting Antigen Presentation Function of Macrophage
- Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus