Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and Anti-pathogen Activities
The infectious agents that cause malaria and dengue are transmitted by Anopheles and Aedes mosquitoes, respectively. Bacteria found in the mosquito midgut have the potential to dramatically affect the susceptibility of the mosquito vector to the malaria parasite and dengue virus. In this work, we investigate one such microbe, Chromobacterium sp. (Csp_P), a bacterium isolated from a field-caught Aedes aegypti mosquito. We show that Csp_P can effectively colonize the midguts of Anopheles gambiae and Aedes aegypti mosquitoes and can, when ingested by the mosquito, significantly reduce the mosquito's susceptibility to infection with the malaria parasite and dengue virus. We also show that exposure to, and ingestion of, Csp_P can reduce the lifespan of larval and adult mosquitoes, respectively. We show that Csp_P has anti-Plasmodium and anti-dengue activity independent of the mosquito, suggesting that the bacterium secretes metabolites that could potentially be exploited to prevent disease transmission or to treat infection.
Vyšlo v časopise:
Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and Anti-pathogen Activities. PLoS Pathog 10(10): e32767. doi:10.1371/journal.ppat.1004398
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004398
Souhrn
The infectious agents that cause malaria and dengue are transmitted by Anopheles and Aedes mosquitoes, respectively. Bacteria found in the mosquito midgut have the potential to dramatically affect the susceptibility of the mosquito vector to the malaria parasite and dengue virus. In this work, we investigate one such microbe, Chromobacterium sp. (Csp_P), a bacterium isolated from a field-caught Aedes aegypti mosquito. We show that Csp_P can effectively colonize the midguts of Anopheles gambiae and Aedes aegypti mosquitoes and can, when ingested by the mosquito, significantly reduce the mosquito's susceptibility to infection with the malaria parasite and dengue virus. We also show that exposure to, and ingestion of, Csp_P can reduce the lifespan of larval and adult mosquitoes, respectively. We show that Csp_P has anti-Plasmodium and anti-dengue activity independent of the mosquito, suggesting that the bacterium secretes metabolites that could potentially be exploited to prevent disease transmission or to treat infection.
Zdroje
1. CirimotichCM, RamirezJL, DimopoulosG (2011) Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10: 307–310 doi:10.1016/j.chom.2011.09.006
2. CirimotichCM, ClaytonAM, DimopoulosG (2011) Low- and high-tech approaches to control Plasmodium parasite transmission by anopheles mosquitoes. J Trop Med 2011: 891342 doi:10.1155/2011/891342
3. CirimotichCM, DongY, ClaytonAM, SandifordSL, Souza-Neto JA, et al. (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332: 855–858 doi:10.1126/science.1201618
4. Gonzalez-CeronL, SantillanF, RodriguezMH, MendezD, Hernandez-AvilaJE (2003) Bacteria in Midguts of Field-Collected Anopheles albimanus Block Plasmodium vivax Sporogonic Development. J Med Entomol 40: 371–374.
5. RamirezJL, Souza-NetoJ, Torres CosmeR, RoviraJ, OrtizA, et al. (2012) Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6: e1561 doi:10.1371/journal.pntd.0001561
6. BeierMS, PumpuniCB, BeierJC, DavisJR (1994) Effects of Para-Aminobenzoic Acid, Insulin, and Gentamicin on Plasmodium falciparum Development in Anopheline Mosquitoes (Diptera: Culicidae). J Med Entomol 31: 561–565.
7. DongY, ManfrediniF, DimopoulosG (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5: e1000423 doi:10.1371/journal.ppat.1000423
8. XiZ, RamirezJL, DimopoulosG (2008) The Aedes aegypti Toll Pathway Controls Dengue Virus Infection. PLoS Pathog 4: e1000098.
9. AzambujaP, GarciaES, RatcliffeNA (2005) Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 21: 568–572.
10. MeisterS, AgianianB, TurlureF, RelógioA, MorlaisI, et al. (2009) Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog 5: e1000542 doi:10.1371/journal.ppat.1000542
11. O'TooleG, KaplanHB, KolterR (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54: 49–79.
12. FlemmingH-C, WingenderJ (2010) The biofilm matrix. Nat Rev Microbiol 8: 623–633 doi:10.1038/nrmicro2415
13. MulcahyH, SibleyCD, SuretteMG, LewenzaS (2011) Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 7: e1002299 doi:10.1371/journal.ppat.1002299
14. DuránN, MenckCF (2001) Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit Rev Microbiol 27: 201–222.
15. Creczynski-PasaTB, Antônio RV (2004) Energetic metabolism of Chromobacterium violaceum. Genet Mol Res 3: 162–166.
16. LopesSCP, BlancoYC, JustoGZ, NogueiraPA, RodriguesFLS, et al. (2009) Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimicrob Agents Chemother 53: 2149–2152 doi:10.1128/AAC.00693-08
17. MichaelsR, CorpeWA (1965) Cyanide formation by Chromobacterium violaceum. J Bacteriol 89: 106–112.
18. BlomD, FabbriC, EberlL, WeisskopfL (2011) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77: 1000–1008 doi:10.1128/AEM.01968-10
19. Ribeiro de VasconcelosAT, AlmeidaDF, HungriaM, et al. (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci U S A 100: 11660–11665 doi:10.1073/pnas.1832124100
20. GallagherLA, ManoilC (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183: 6207–6214 doi:10.1128/JB.183.21.6207-6214.2001
21. BroderickKE, ChanA, BalasubramanianM, FealaJ, ReedSL, et al. (2008) Cyanide produced by human isolates of Pseudomonas aeruginosa contributes to lethality in Drosophila melanogaster. J Infect Dis 197: 457–464 doi:10.1086/525282
22. MartinPAW, Gundersen-RindalD, BlackburnM, BuyerJ (2007) Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol 57: 993–999 doi:10.1099/ijs.0.64611-0
23. ClaytonAM, CirimotichCM, DongY, DimopoulosG (2013) Caudal is a negative regulator of the Anopheles IMD pathway that controls resistance to Plasmodium falciparum infection. Dev Comp Immunol 39: 323–332 doi:10.1016/j.dci.2012.10.009
24. BahiaAC, DongY, BlumbergBJ, MlamboG, TripathiA, et al. (2014) Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol 16(9): 2980–94 doi:10.1111/1462-2920.12381
25. StraifSC, MbogoCN, ToureAM, WalkerED, KaufmanM, et al. (1998) Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol 35: 222–226.
26. LindhJM, TereniusO, FayeI (2005) 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol 71: 7217–7223 doi:10.1128/AEM.71.11.7217-7223.2005
27. RaniA, SharmaA, RajagopalR, AdakT, BhatnagarRK (2009) Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol 9: 96 doi:10.1186/1471-2180-9-96
28. MüllerGC, SchleinY (2008) Efficacy of toxic sugar baits against adult cistern-dwelling Anopheles claviger. Trans R Soc Trop Med Hyg 102: 480–484 doi:10.1016/j.trstmh.2008.01.008
29. RiehleMA, MoreiraCK, LampeD, LauzonC, Jacobs-LorenaM (2007) Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol 37: 595–603.
30. DasS, GarverL, RamirezJR, XiZ, DimopoulosG (2007) Protocol for dengue infections in mosquitoes (A. aegypti) and infection phenotype determination. J Vis Exp 220.
31. TragerW, JensenJB (1976) Human malaria parasites in continuous culture. Science 193: 673–675.
32. BennettTN, PaguioM, GligorijevicB, SeudieuC, KosarAD, et al. (2004) Novel, Rapid, and Inexpensive Cell-Based Quantification of Antimalarial Drug Efficacy. Antimicrob Agents Chemother 48: 1807–1810.
33. LambrosC, VanderbergJ (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65: 418–420.
34. FerrerP, TripathiAK, ClarkMA, HandCC, RienhoffHY, et al. (2012) Antimalarial iron chelator, FBS0701, shows asexual and gametocyte Plasmodium falciparum activity and single oral dose cure in a murine malaria model. PLoS One 7: e37171.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Novel Cyclic di-GMP Effectors of the YajQ Protein Family Control Bacterial Virulence
- MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to
- CD4 Depletion in SIV-Infected Macaques Results in Macrophage and Microglia Infection with Rapid Turnover of Infected Cells
- Theory and Empiricism in Virulence Evolution