Novel Cyclic di-GMP Effectors of the YajQ Protein Family Control Bacterial Virulence
Cyclic di-GMP is a bacterial second messenger that acts to regulate a wide range of functions including those that contribute to the virulence of pathogens. Our knowledge of the different actions and receptors for this nucleotide is far from complete. An understanding of the action of these elements may be key to interference with the processes they control. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris. This analysis identified XC_3703, a protein of the YajQ family that was able to bind cyclic di-GMP with high affinity. Mutation of XC_3703 led to reduced virulence of X. campestris to plants and alteration in biofilm formation. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence and raise the possibility that other members of the YajQ family, which occur widely in bacteria, also act in cyclic di-GMP signalling pathways.
Vyšlo v časopise:
Novel Cyclic di-GMP Effectors of the YajQ Protein Family Control Bacterial Virulence. PLoS Pathog 10(10): e32767. doi:10.1371/journal.ppat.1004429
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004429
Souhrn
Cyclic di-GMP is a bacterial second messenger that acts to regulate a wide range of functions including those that contribute to the virulence of pathogens. Our knowledge of the different actions and receptors for this nucleotide is far from complete. An understanding of the action of these elements may be key to interference with the processes they control. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris. This analysis identified XC_3703, a protein of the YajQ family that was able to bind cyclic di-GMP with high affinity. Mutation of XC_3703 led to reduced virulence of X. campestris to plants and alteration in biofilm formation. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence and raise the possibility that other members of the YajQ family, which occur widely in bacteria, also act in cyclic di-GMP signalling pathways.
Zdroje
1. BoydCD, O'TooleGA (2012) Second messenger regulation of biofilm formation: Breakthroughs in understanding c-di-GMP effector systems. Annu Rev Cell Dev Biol 28: 439–462.
2. HenggeR (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7: 263–273.
3. RomlingU, GalperinMY, GomelskyM (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77: 1–52.
4. SchirmerT, JenalU (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7: 724–735.
5. RyanRP, Tolker-NielsenT, DowJM (2012) When the PilZ don't work: effectors for cyclic di-GMP action in bacteria. Trends Microbiol 20: 235–242.
6. SondermannH, ShikumaNJ, YildizFH (2012) You've come a long way: c-di-GMP signaling. Curr Opin Microbiol 15: 140–146.
7. MansfieldJ, GeninS, MagoriS, CitovskyV, SriariyanumM, RonaldP, DowM, VerdierV, BeerSV, MachadoMA, et al. (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13: 614–629.
8. RyanRP (2013) Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiol-SGM 159: 1286–1297.
9. RyanRP, FouhyY, LuceyJF, CrossmanLC, SpiroS, HeYW, ZhangLH, HeebS, CamaraM, WilliamsP, et al. (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA 103: 6712–6717.
10. RyanRP, FouhyY, LuceyJF, JiangB-L, HeY-Q, FengJ-X, TangJ-L, DowJM (2007) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63: 429–442.
11. ChinK-H, LeeY-C, TuZ-L, ChenC-H, TsengY-H, YangJ-M, RyanRP, McCarthyY, DowJM, WangAHJ, et al. (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396: 646–662.
12. GuzzoCR, DungerG, SalinasRK, FarahCS (2013) Structure of the PilZ-FimX(EAL)-c-di-GMP complex responsible for the regulation of bacterial type IV pilus biogenesis. J Mol Biol 425: 2174–2197.
13. McCarthyY, RyanRP, O'DonovanK, HeY-Q, JiangB-L, FengJ-X, TangJ-L, DowJM (2008) The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. Mol Plant Pathol 9: 819–824.
14. TaoF, HeY-W, WuD-H, SwarupS, ZhangL-H (2010) The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic-di-GMP effectors. J Bacteriol 192: 1020–1029.
15. LundbackT, HardT (1996) Sequence-specific DNA-binding dominated by dehydration. Proc Natl Acad Sci USA 93: 4754–4759.
16. SaveanuC, MironS, BorzaT, CraescuCT, LabesseG, GagyiC, PopescuA, SchaefferF, NamaneA, Laurent-WinterC, et al. (2002) Structural and nucleotide-binding properties of YajQ and YnaF, two Escherichia coli proteins of unknown function. Protein Sci 11: 2551–2560.
17. RyanRP, McCarthyY, KielyPA, O'ConnorR, FarahCS, ArmitageJP, DowJM (2012) Dynamic complex formation between HD-GYP, GGDEF and PilZ domain proteins regulates motility in Xanthomonas campestris. Mol Microbiol 86: 557–567.
18. FouhyY, ScanlonK, SchouestK, SpillaneC, CrossmanL, AvisonMB, RyanRP, DowJM (2007) Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol 189: 4964–4968.
19. MulcahyH, O'CallaghanJ, O'GradyEP, AdamsC, O'GaraF (2006) The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type III secretion system. Infect Immun 74: 3012–3015.
20. TeplyakovA, ObmolovaG, BirN, ReddyP, HowardAJ, GillilandGL (2003) Crystal structure of the YajQ protein from Haemophilus influenzae reveals a tandem of RNP-like domains. J Struct Funct Genomics 4: 1–9.
21. DuevelJ, BertinettiD, MoellerS, SchwedeF, MorrM, et al. (2012) A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J Microbiol Methods 88: 229–236.
22. NesperJ, ReindersA, GlatterT, SchmidtA, JenalU (2012) A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteomics 75: 4874–4878.
23. QiaoX, SunY, QiaoJ, MindichL (2008) The role of host protein YajQ in the temporal control of transcription in bacteriophage Phi 6. Proc Natl Acad Sci USA 105: 15956–15960.
24. HaD-G, MerrittJH, HamptonTH, HodgkinsonJT, JanecekM, SpringDR, WelchM, O'TooleGA (2011) 2-Heptyl-4-Quinolone, a precursor of the Pseudomonas quinolone signal molecule, modulates swarming motility in Pseudomonas aeruginosa. J Bacteriol 193: 6770–6780.
25. LuX-H, AnS-Q, TangD-J, McCarthyY, TangJ-L, DowJM, RyanRP (2012) RsmA regulates biofilm formation in Xanthomonas campestris through a regulatory network involving cyclic di-GMP and the Clp transcription factor. PLoS One 7: 12.
26. RyanRP, LuceyJ, O'DonovanK, McCarthyY, YangL, Tolker-NielsenT, DowJM (2009) HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ Microbiol 11: 1126–1136.
27. PultzIS, ChristenM, KulasekaraHD, KennardA, KulasekaraB, MillerSI (2012) The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c-di-GMP. Mol Microbiol 86: 1424–1440.
28. GalperinMY (2010) Diversity of structure and function of response regulator output domains. Curr Opin Microbiol 13: 150–159.
29. MaddocksSE, OystonPCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiol-SGM 154: 3609–3623.
30. MomanyC, NeidleEL (2012) Defying stereotypes: the elusive search for a universal model of LysR-type regulation. Mol Microbiol 83: 453–456.
31. AnS-Q, FebrerM, McCarthyY, TangD-J, ClissoldL, KaithakottilG, SwarbreckD, TangJ-L, RogersJ, DowJM, et al. (2013) High-resolution transcriptional analysis of the regulatory influence of cell-to-cell signalling reveals novel genes that contribute to Xanthomonas phytopathogenesis. Mol Microbiol 88: 1058–1069.
32. AnS-Q, LuG-T, SuH-Z, LiR-F, HeY-Q, JiangB-L, TangD-J, TangJ-L (2011) Systematic mutagenesis of all predicted gntR genes in Xanthomonas campestris pv. campestris reveals a GntR family transcriptional regulator controlling hypersensitive response and virulence. Mol Plant Microbe Interact 24: 1027–1039.
33. SlaterH, Alvarez-MoralesA, BarberCE, DanielsMJ, DowJM (2000) A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38: 986–1003.
34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd Edition Volumes 1, 2 and 3.
35. TwomeyKB, O'ConnellOJ, McCarthyY, DowJM, O'TooleGA, PlantBJ, RyanRP (2012) Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa. ISME J 26: 939–950.
36. AnS-Q, AllanJH, McCarthyY, FebrerM, DowJM, RyanRP (2014) The PAS domain-containing histidine kinase RpfS is a second sensor for the diffusible signal factor of Xanthomonas campestris. Mol Microbiol 92: 586–597.
37. McCarthyY, YangL, TwomeyKB, SassA, Tolker-NielsenT, MahenthiralingamE, DowJM, RyanRP (2010) A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia. Mol Microbiol 77: 1220–1236.
38. AndersonGG, Moreau-MarquisS, StantonBA, O'TooleGA (2008) In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect Immun 76: 1423–1433.
39. Moreau-MarquisS, StantonBA, O'TooleGA (2008) Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Therap 21: 595–599.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Novel Cyclic di-GMP Effectors of the YajQ Protein Family Control Bacterial Virulence
- MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to
- CD4 Depletion in SIV-Infected Macaques Results in Macrophage and Microglia Infection with Rapid Turnover of Infected Cells
- Theory and Empiricism in Virulence Evolution