#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cullin4 Is Pro-Viral during West Nile Virus Infection of Mosquitoes


Mosquitoes are responsible for transmitting a large number of human and livestock viruses, like West Nile, dengue and Japanese encephalitis viruses. Infection of female mosquitoes with these viruses during blood feeding elicits an immune response. It is not known how the viruses manage to replicate in spite of this antiviral response. We used an unbiased transcriptome sequencing approach to identify genes differentially regulated after WNV infection resulting in 265 transcripts from various cellular pathways. Ubiquitin-proteasomal pathway, responsible for protein degradation, was found to be important during viral infection in mosquito cells. Using in vitro and in vivo infection models, we identified Culex Cul4 to be acting as pro-viral protein, increasing viral titers. Knockdown of Cul4 in Culex mosquitoes decreased viral titers in mosquito saliva. Identification of this novel immune evasion mechanism adopted by WNV provides new insights into transmission of arbovirus and interaction of WNV with its mosquito vector.


Vyšlo v časopise: Cullin4 Is Pro-Viral during West Nile Virus Infection of Mosquitoes. PLoS Pathog 11(9): e32767. doi:10.1371/journal.ppat.1005143
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005143

Souhrn

Mosquitoes are responsible for transmitting a large number of human and livestock viruses, like West Nile, dengue and Japanese encephalitis viruses. Infection of female mosquitoes with these viruses during blood feeding elicits an immune response. It is not known how the viruses manage to replicate in spite of this antiviral response. We used an unbiased transcriptome sequencing approach to identify genes differentially regulated after WNV infection resulting in 265 transcripts from various cellular pathways. Ubiquitin-proteasomal pathway, responsible for protein degradation, was found to be important during viral infection in mosquito cells. Using in vitro and in vivo infection models, we identified Culex Cul4 to be acting as pro-viral protein, increasing viral titers. Knockdown of Cul4 in Culex mosquitoes decreased viral titers in mosquito saliva. Identification of this novel immune evasion mechanism adopted by WNV provides new insights into transmission of arbovirus and interaction of WNV with its mosquito vector.


Zdroje

1. Gubler DJ, Meltzer M (1999) Impact of dengue/dengue hemorrhagic fever on the developing world. Adv Virus Res 53: 35–70. 10582094

2. Randolph SE, Rogers DJ (2010) The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat Rev Microbiol 8: 361–371. doi: 10.1038/nrmicro2336 20372156

3. Krishnan MN, Garcia-Blanco MA (2014) Targeting host factors to treat West Nile and dengue viral infections. Viruses 6: 683–708. doi: 10.3390/v6020683 24517970

4. Fragkoudis R, Attarzadeh-Yazdi G, Nash AA, Fazakerley JK, Kohl A (2009) Advances in dissecting mosquito innate immune responses to arbovirus infection. Journal of General Virology 90: 2061–2072. doi: 10.1099/vir.0.013201-0 19570957

5. Souza-Neto JA, Sim S, Dimopoulos G (2009) An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proceedings of the National Academy of Sciences USA 106: 17841–17846.

6. Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, et al. (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog 5: e1000299. doi: 10.1371/journal.ppat.1000299 19214215

7. Paradkar PN, Trinidad L, Voysey R, Duchemin JB, Walker PJ (2012) Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc Natl Acad Sci U S A 109: 18915–18920. doi: 10.1073/pnas.1205231109 23027947

8. Zou Z, Souza-Neto J, Xi Z, Kokoza V, Shin SW, et al. (2011) Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity. PLoS Pathog 7: e1002394. doi: 10.1371/journal.ppat.1002394 22114564

9. Sim S, Jupatanakul N, Ramirez JL, Kang S, Romero-Vivas CM, et al. (2013) Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl Trop Dis 7: e2295. doi: 10.1371/journal.pntd.0002295 23861987

10. Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, et al. (2011) Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog 7: e1002189. doi: 10.1371/journal.ppat.1002189 21909258

11. Girard YA, Mayhew GF, Fuchs JF, Li H, Schneider BS, et al. (2010) Transcriptome changes in Culex quinquefasciatus (Diptera: Culicidae) salivary glands during West Nile virus infection. J Med Entomol 47: 421–435. 20496590

12. Hochstrasser M (2000) Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2: E153–157. 10934491

13. Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20: 1242–1253. doi: 10.1038/nm.3739 25375928

14. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425–479. 9759494

15. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94–102. 10619848

16. Xie Y, Varshavsky A (2000) Physical association of ubiquitin ligases and the 26S proteasome. Proc Natl Acad Sci U S A 97: 2497–2502. 10688918

17. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A 92: 5249. 7761480

18. Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102: 549–552. 11007473

19. Aravind L, Koonin EV (2000) The U box is a modified RING finger—a common domain in ubiquitination. Curr Biol 10: R132–134. 10704423

20. Boname JM, Stevenson PG (2001) MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15: 627–636. 11672544

21. Mansouri M, Bartee E, Gouveia K, Hovey Nerenberg BT, Barrett J, et al. (2003) The PHD/LAP-domain protein M153R of myxomavirus is a ubiquitin ligase that induces the rapid internalization and lysosomal destruction of CD4. J Virol 77: 1427–1440. 12502858

22. Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6: 9–20. 15688063

23. Errington WJ, Khan MQ, Bueler SA, Rubinstein JL, Chakrabartty A, et al. (2012) Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Structure 20: 1141–1153. doi: 10.1016/j.str.2012.04.009 22632832

24. Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V (2010) The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells. J Proteome Res 9: 4960–4971. doi: 10.1021/pr100219y 20718508

25. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, et al. (2008) RNA interference screen for human genes associated with West Nile virus infection. Nature 455: 242–245. doi: 10.1038/nature07207 18690214

26. Fernandez-Garcia MD, Meertens L, Bonazzi M, Cossart P, Arenzana-Seisdedos F, et al. (2011) Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. J Virol 85: 2980–2989. doi: 10.1128/JVI.02483-10 21191016

27. Yu Y, Wang SE, Hayward GS (2005) The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22: 59–70. 15664159

28. Blanchette P, Branton PE (2009) Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. Virology 384: 317–323. doi: 10.1016/j.virol.2008.10.005 19013629

29. Precious B, Childs K, Fitzpatrick-Swallow V, Goodbourn S, Randall RE (2005) Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. J Virol 79: 13434–13441. 16227264

30. Ulane CM, Horvath CM (2002) Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304: 160–166. 12504558

31. Fink J, Gu F, Ling L, Tolfvenstam T, Olfat F, et al. (2007) Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1: e86. 18060089

32. Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K, et al. (2010) Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 330: 88–90. doi: 10.1126/science.1193162 20929811

33. Barry M, Fruh K (2006) Viral modulators of cullin RING ubiquitin ligases: culling the host defense. Sci STKE 2006: pe21. 16705129

34. Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, et al. (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nature Immunology 6: 946–953. 16086017

35. Paradkar PN, Duchemin JB, Voysey R, Walker PJ (2014) Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway. PLoS Negl Trop Dis 8: e2823. doi: 10.1371/journal.pntd.0002823 24762775

36. Sessions OM, Tan Y, Goh KC, Liu Y, Tan P, et al. (2013) Host cell transcriptome profile during wild-type and attenuated dengue virus infection. PLoS Negl Trop Dis 7: e2107. doi: 10.1371/journal.pntd.0002107 23516652

37. Bourgeois MA, Denslow ND, Seino KS, Barber DS, Long MT (2011) Gene expression analysis in the thalamus and cerebrum of horses experimentally infected with West Nile virus. PLoS One 6: e24371. doi: 10.1371/journal.pone.0024371 21991302

38. Munoz-Erazo L, Natoli R, Provis JM, Madigan MC, King NJ (2012) Microarray analysis of gene expression in West Nile virus-infected human retinal pigment epithelium. Mol Vis 18: 730–743. 22509103

39. Becerra A, Warke RV, Martin K, Xhaja K, de Bosch N, et al. (2009) Gene expression profiling of dengue infected human primary cells identifies secreted mediators in vivo. J Med Virol 81: 1403–1411. doi: 10.1002/jmv.21538 19551822

40. Delboy MG, Roller DG, Nicola AV (2008) Cellular proteasome activity facilitates herpes simplex virus entry at a postpenetration step. J Virol 82: 3381–3390. doi: 10.1128/JVI.02296-07 18234803

41. Satheshkumar PS, Anton LC, Sanz P, Moss B (2009) Inhibition of the ubiquitin-proteasome system prevents vaccinia virus DNA replication and expression of intermediate and late genes. J Virol 83: 2469–2479. doi: 10.1128/JVI.01986-08 19129442

42. Bandi P, Garcia ML, Booth CJ, Chisari FV, Robek MD (2010) Bortezomib inhibits hepatitis B virus replication in transgenic mice. Antimicrob Agents Chemother 54: 749–756. doi: 10.1128/AAC.01101-09 19949053

43. Gupta A, Jha S, Engel DA, Ornelles DA, Dutta A (2013) Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA. Oncogene 32: 5017–5025. doi: 10.1038/onc.2012.534 23178490

44. Widjaja I, de Vries E, Tscherne DM, Garcia-Sastre A, Rottier PJ, et al. (2010) Inhibition of the ubiquitin-proteasome system affects influenza A virus infection at a postfusion step. J Virol 84: 9625–9631. doi: 10.1128/JVI.01048-10 20631148

45. Schubert U, Ott DE, Chertova EN, Welker R, Tessmer U, et al. (2000) Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc Natl Acad Sci U S A 97: 13057–13062. 11087859

46. Yu GY, Lai MM (2005) The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. J Virol 79: 644–648. 15596861

47. Lupfer C, Pastey MK (2010) Decreased replication of human respiratory syncytial virus treated with the proteasome inhibitor MG-132. Virus Res 149: 36–41. doi: 10.1016/j.virusres.2009.12.010 20080137

48. Lopez T, Silva-Ayala D, Lopez S, Arias CF (2011) Replication of the rotavirus genome requires an active ubiquitin-proteasome system. J Virol 85: 11964–11971. doi: 10.1128/JVI.05286-11 21900156

49. Collins CA, Brown EJ (2010) Cytosol as battleground: ubiquitin as a weapon for both host and pathogen. Trends Cell Biol 20: 205–213. doi: 10.1016/j.tcb.2010.01.002 20129784

50. Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, et al. (2001) Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15: 3104–3117. 11731475

51. Platanias LC, Fish EN (1999) Signaling pathways activated by interferons. Exp Hematol 27: 1583–1592. 10560905

52. Horvath CM (2004) Weapons of STAT destruction. Interferon evasion by paramyxovirus V protein. Eur J Biochem 271: 4621–4628. 15606749

53. Ashour J, Laurent-Rolle M, Shi PY, Garcia-Sastre A (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83: 5408–5418. doi: 10.1128/JVI.02188-08 19279106

54. Laurent-Rolle M, Boer EF, Lubick KJ, Wolfinbarger JB, Carmody AB, et al. (2010) The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol 84: 3503–3515. doi: 10.1128/JVI.01161-09 20106931

55. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14: R36. doi: 10.1186/gb-2013-14-4-r36 23618408

56. Megy K, Emrich SJ, Lawson D, Campbell D, Dialynas E, et al. (2012) VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res 40: D729–734. doi: 10.1093/nar/gkr1089 22135296

57. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7: 562–578. doi: 10.1038/nprot.2012.016 22383036

58. Hall RA, Tan SE, Selisko B, Slade R, Hobson-Peters J, et al. (2009) Monoclonal antibodies to the West Nile virus NS5 protein map to linear and conformational epitopes in the methyltransferase and polymerase domains. J Gen Virol 90: 2912–2922. doi: 10.1099/vir.0.013805-0 19710254

59. Fragkoudis R, Chi Y, Siu RW, Barry G, Attarzadeh-Yazdi G, et al. (2008) Semliki Forest virus strongly reduces mosquito host defence signaling. Insect Mol Biol 17: 647–656. doi: 10.1111/j.1365-2583.2008.00834.x 18811601

60. Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M (2005) Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436: 871–875. 16094372

61. Anderson SL, Richards SL, Smartt CT (2010) A simple method for determining arbovirus transmission in mosquitoes. J Am Mosq Control Assoc 26: 108–111. 20402359

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#