Hybridization in Parasites: Consequences for Adaptive Evolution, Pathogenesis, and Public Health in a Changing World
article has not abstract
Vyšlo v časopise:
Hybridization in Parasites: Consequences for Adaptive Evolution, Pathogenesis, and Public Health in a Changing World. PLoS Pathog 11(9): e32767. doi:10.1371/journal.ppat.1005098
Kategorie:
Opinion
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005098
Souhrn
article has not abstract
Zdroje
1. Semenza JC, Menne B (2009) Climate change and infectious diseases in Europe. Lancet Infectious Diseases 9: 365–375. doi: 10.1016/S1473-3099(09)70104-5 19467476
2. Nichols GL, Andersson Y, Lindgren E, Devaux I, Semenza JC (2014) European Monitoring Systems and Data for Assessing Environmental and Climate Impacts on Human Infectious Diseases. International Journal of Environmental Research and Public Health 11: 3894–3936. doi: 10.3390/ijerph110403894 24722542
3. Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, et al. (1999) Climate change and future populations at risk of malaria. Global Environmental Change-Human and Policy Dimensions 9: S89–S107.
4. Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90: 888–900. 19449681
5. Brooks DR, Hoberg EP (2007) How will global climate change affect parasite-host assemblages? Trends in Parasitology 23: 571–574. 17962073
6. Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. International Journal for Parasitology 30: 1395–1405. 11113264
7. Hales S, de Wet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360: 830–834. 12243917
8. Astrom C, Rocklov J, Hales S, Beguin A, Louis V, et al. (2012) Potential Distribution of Dengue Fever Under Scenarios of Climate Change and Economic Development. Ecohealth 9: 448–454. doi: 10.1007/s10393-012-0808-0 23408100
9. Moore S, Shrestha S, Tomlinson KW, Vuong H (2012) Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology. Journal of the Royal Society Interface 9: 817–830.
10. Nowak MA, May RM (1994) Superinfection and the evolution of parasite virulence. Proceedings of the Royal Society of London B: Biological Sciences 255: 81–89.
11. Norton AJ, Webster JP, Kane R, Rollinson D (2008) Inter-specific parasite competition: mixed infections of Schistosoma mansoni and S. rodhaini in the definitive host. Parasitology 135: 1–12.
12. Webster JP, Gower CM, Norton AJ (2008) Application of evolutionary concepts to predicting and evaluating the impact of mass-chemotherapy schistosomiasis control programmes. Evolutionary Applications 1: 66–83. doi: 10.1111/j.1752-4571.2007.00012.x 25567492
13. Koukounari A, Donnelly CA, Sacko M, Keita A, Landoure A, et al. (2010) The impact of single versus mixed schistosome species infections on liver, spleen and bladder morbidity within Malian children pre- and post-praziquantel treatment. BMC Infectious Diseases 10: 227. doi: 10.1186/1471-2334-10-227 20670408
14. Detwiler JT, Criscione CD (2010) An infectious topic in reticulate evolution: introgression and hybridization in animal parasites. Genes 210: 102–123.
15. Baack EJ, Rieseberg LH (2007) A genomic view of introgression and hybrid speciation. Current Opinion in Genetics & Development 17: 513–518.
16. Arnold M (2004) Natural hybridization and the evolution of domesticated, pest and disease organisms. Molecular Ecology 13: 997–1007. 15078439
17. Mavarez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, et al. (2006) Speciation by hybridization in Heliconius butterflies. Nature 441: 868–871. 16778888
18. Hawks J, Cochran G (2006) Dynamics of adaptive introgression from archaic to modern humans. Paleoanthropology 2006: 101–115.
19. Arnold ML (2004) Natural hybridization and the evolution of domesticated, pest and disease organisms. Molecular Ecology 13: 997–1007. 15078439
20. Li W, Averette AF, Desnos-Ollivier M, Ni M, Dromer F, et al. (2012) Genetic diversity and genomic plasticity of Cyptococcus neoformans AD hybrid strains. G3: Genes, Genomes, Genetics 2: 83–97
21. Webster BL, Diaw OT, Seye MM, Webster JP, Rollinson D (2013) Introgressive hybridization of Schistosoma haematobium group species in Senegal: species barrier break down between ruminant and human schistosomes. PloS Neglected Tropical Diseases 7: e2110. doi: 10.1371/journal.pntd.0002110 23593513
22. Criscione CD, Anderson JD, Sudimack D, Peng W, Jha B, et al. (2007) Disentangling hybridization and host colonization in parasitic roundworms of humans and pigs. Proceedings of the Royal Society B-Biological Sciences 274: 2669–2677.
23. Le TH, De NV, Agatsuma T, Thi Nguyen TG, Nguyen QD, et al. (2008) Human fascioliasis and the presence of hybrid/introgressed forms of Fasciola hepatica and Fasciola gigantica in Vietnam. International Journal for Parasitology 38: 725–730. 18031748
24. Dunams-Morel DB, Reichard MV, Torretti L, Zarlenga DS, Rosenthal BM (2012) Discernible but limited introgression has occurred where Trichinella nativa and the T6 genotype occur in sympatry. Infection, Genetics and Evolution 12: 530–538. doi: 10.1016/j.meegid.2012.01.004 22266240
25. Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, et al. (2014) Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population PLoS Genetics 10: e1004092. doi: 10.1371/journal.pgen.1004092 24453988
26. Sturm NR, Vargas NS, Westenberger SJ, Zingales B, Campbell DA (2003) Evidence for multiple hybrid groups in Trypanosoma cruzi. International Journal for Parasitology 33: 269–279. 12670512
27. Machado CA, Ayala FJ (2001) Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proceedings of the National Academy of Sciences of the United States of America 98: 7396–7401. 11416213
28. Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, et al. (2003) Mechanism of genetic exchange in American trypanosomes. Nature 421: 936–939. 12606999
29. Grigg ME, Bonnefoy S, Hehl AB, Suzuki Y, Boothroyd JC (2001) Success and virulence in toxoplasma as the result of sexual recombination between two distinct ancestries. Science 294: 161–165. 11588262
30. Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, et al. (2009) Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324: 265–268. doi: 10.1126/science.1169464 19359589
31. Ramiro RS, Khan SM, Franke-Faynard B, Janse CJ, Obbard DJ, et al. (2015) Hybridization and pre-zygotic reproductive barriers in Plasmodium. Proceedings of the Royal Society Biological Sciences Series B 282.
32. Webster JP, Molyneux D, Hotez PJ, Fenwick A (2014) The contribution of mass drug administration to global health—past, present and future. Philosophical Transactions of the Royal Society of London B Biological Sciences 369: 20130434. doi: 10.1098/rstb.2013.0434 24821920
33. Arnold ML (2006) Evolution through genetic exchange; Press OU, editor. Oxford.
34. Dobzhansky T (1937) Genetic nature of species differences. American Naturalist 71: 404–420.
35. Müller HJ (1942) Isolating mechanisms, evolution and temperature. Biological Symposium 6: 71–125.
36. Coyne JA, Orr HA (2004) Speciation. Sunderland, MA: Sinauer Associates.
37. Edmands S (2002) Does parental divergence predict reproductive compatibility? Trends in Ecology & Evolution 17: 520–527.
38. Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45: 622–629.
39. Barton NH (2001) The role of hybridization in evolution. Molecular Ecology 10: 551–568. 11298968
40. Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, et al. (2013) Hybridization and speciation. Journal of Evolutionary Biology 26: 229–246. doi: 10.1111/j.1420-9101.2012.02599.x 23323997
41. Seehausen O (2004) Hybridization and adaptive radiation. Trends in Ecology & Evolution 19: 198–207.
42. Krehenwinkel H, Tautz D (2013) Northern range expansion of European populations of the wasp spider Argiope bruennichi is associated with global warming correlated genetic admixture and population-specific temperature adaptations. Molecular Ecology 22: 2232–2248. doi: 10.1111/mec.12223 23496675
43. Grant BR, Grant PR (2008) Fission and fusion of Darwin's finches populations. Philosophical Transactions of the Royal Society B-Biological Sciences 363: 2821–2829.
44. Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, et al. (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301: 1211–1216. 12907807
45. Mallet J (2007) Hybrid speciation. Nature 446: 279–283. 17361174
46. Schumer M, Rosenthal GG, Andolfatto P (2014) How common is homoploid hybrid speciation? Evolution 68: 1553–1560. doi: 10.1111/evo.12399 24620775
47. Dittrich-Reed DR, Fitzpatrick BM (2012) Transgressive hybrids as hopeful monsters. Evolutionary Biology 40: 310–315. 23687396
48. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83: 363–372. 10583537
49. Stelkens RB, Brockhurst MA, Hurst GDD, Miller EL, Greig D (2014) The effect of hybrid transgression on environmental tolerance in experimental yeast crosses. Journal of Evolutionary Biology 27: 2507–2519. doi: 10.1111/jeb.12494 25262771
50. Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends in Ecology & Evolution 23: 38–44.
51. Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Molecular Ecology 22: 4606–4618. doi: 10.1111/mec.12415 23906376
52. Stelkens RB, Brockhurst MA, Hurst GDD, Greig D (2014) Hybridization facilitates evolutionary rescue. Evolutionary Applications 7: 1209–1217. doi: 10.1111/eva.12214 25558281
53. Stukenbrock EH, Christiansen FB, Hansen TT, Dutheil JY, Schierup MH (2012) Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proceedings of the National Academy of Sciences of the United States of America 109: 10954–10959. doi: 10.1073/pnas.1201403109 22711811
54. Davies J (1996) Origins and evolution of antibiotic resistance. Microbiologia 12: 9–16. 9019139
55. Gyles C, Boerlin P (2014) Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease. Veterinary Pathology Online 51: 328–340.
56. Ochman H, Moran NA (2001) Genes lost and genes found: the molecular evolution of bacterial pathogenesis and symbiosis. Science 292: 1096–1098. 11352062
57. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304. 10830951
58. Strauch E, Lurz R, Beutin L (2001) Characterization of a Shiga Toxin-Encoding Temperate Bacteriophage of Shigella sonnei. Infection and Immunity 69: 7588–7595. 11705937
59. Gibbs MJ, Armstrong JS, Gibbs AJ (2001) Recombination in the hemagglutinin gene of the 1918 "Spanish flu". Science 293: 1842–1845. 11546876
60. Laird AR, Ibarra V, Ruiz-Palacios G, Guerrero ML, Glass RI, et al. (2003) Unexpected detection of animal VP7 genes among common rotavirus strains isolated from children in Mexico. Journal of Clinical Microbiology 41: 4400–4403. 12958276
61. Worobey M, Rambaut A, Holmes EC (1999) Widespread intra-serotype recombination in natural populations of dengue virus. Proceedings of the National Academy of Sciences of the United States of America 96: 7352–7357. 10377418
62. Schelkle B, Faria PJ, Johnson MB, van Oosterhout C, Cable J (2012) Mixed infections and hybridisation in monogenean parasites. Plos ONE 7: e39506. doi: 10.1371/journal.pone.0039506 22808040
63. Volf P, Benkova I, Myskova J, Sadlova J, Campino L, et al. (2007) Increased transmission potential of Leishmania major/Leishmania infantum hybrids. International Journal for Parasitology 37: 589–593. 17376453
64. Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization (vol 96, pg 5878, 1999). Proceedings of the National Academy of Sciences of the United States of America 96: 13589–13589.
65. Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, et al. (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences 108: 18732–18736.
66. Tchuente LAT, Southgate VR, Njiokou F, Njine T, Kouemeni LE, et al. (1997) The evolution of schistosomiasis at Loum, Cameroon: replacement of Schistosoma intercalatum by S. haematobium through introgressive hybridization. Transactions of the Royal Society of Tropical Medicine and Hygiene 91: 664–665. 9509173
67. Huyse T, Webster BL, Geldof S, Stothard JR, Diaw OT, et al. (2009) Birdirectional introgressive hybridization between a cattle and human schistosome species. PLoS Pathogens 5: e1000571. doi: 10.1371/journal.ppat.1000571 19730700
68. Webster BL, Tchuente LAT, Southgate VR (2007) A single-strand conformation polymorphism (SSCP) approach for investigating genetic interactions of Schistosoma haematobium and Schistosoma guineensis in Loum, Cameroon. Parasitology Research 100: 739–745. 17058111
69. Lively CM (1999) Migration, virulence, and the geographic mosaic of adaptation by parasites. American Naturalist 153: S34–S47.
70. Dybdahl MF, Jokela J, Delph LF, Koskella B, Lively CM (2008) Hybrid fitness in a locally adapted parasite. American Naturalist 172: 772–782. doi: 10.1086/592866 18950274
71. Lively CM, Dybdahl MF (2000) Parasite adaptation to locally common host genotypes. Nature 405: 679–681. 10864323
72. Redman E, Sargison N, Whitelaw F, Jackson F, Morrison A, et al. (2012) Introgression of Ivermectin resistance genes into a susceptible Haemonchus contortus strain by multiple backcrossing. PloS Pathogens 8: e1002534. doi: 10.1371/journal.ppat.1002534 22359506
73. Chaudhry U, Redman E, Abbas M, Muthusamy R, Ashraf K, et al. (2015) Genetic evidence for hybridisation between Haemonchus contortus and Haemonchus placei in natural field populations and its implications for interspecies transmission of anthelmintic resistance. International Journal for Parasitology 45: 149–159. doi: 10.1016/j.ijpara.2014.09.002 25449043
74. Song Y, Endepols S, Klemann N, Richter D, Matuschka F-R, et al. (2011) Introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Current Biology 21: 1296–1301. doi: 10.1016/j.cub.2011.06.043 21782438
75. Alves W (1948) Transactions of the Royal Society of Tropical Medicine and Hygiene, 41: 430–439.
76. Bremond P, Campagne G, Sellin B, Labbo R, Garba A, et al. (1996) Les schistosomes anthropophiles et zoophiles au Niger et leur impact sur la santé publique: détermination du risque réel de contamination et de pathogénicité pour les populations humaines. Rapport CERMES 6/96 document: 22 pages.
77. Rollinson D, Southgate VR, Vercruysse J, Moore PJ (1990) Observations on natural and experimental interactions between Schistosoma bovis and Schistosoma curassoni from West-Africa. Acta Tropica 47: 101–114. 1969699
78. Taylor MG (1970) Hybridisation experiments on five species of african schistosomes. Journal of Helminthology 17: 253–314.
79. Webster BL, Diaw OT, Seye MM, Webster JP, Rollinson D (2013) Introgressive hybridization of Schistosoma haematobium group species in Senegal: species barrier break down between ruminant and human schistosomes. PLoS Neglected Tropical Diseases 7: e2110. doi: 10.1371/journal.pntd.0002110 23593513
80. Steinauer ML, Hanelt B, Mwangi IN, Maina GM, Agola LE, et al. (2008) Introgressive hybridization of human and rodent schistosome parasites in western Kenya. Molecular Ecology 17: 5062–5064. doi: 10.1111/j.1365-294X.2008.03957.x 18992007
81. Huyse T, Van den Broeck F, Hellemans B, Volckaert FAM, Polman K (2013) Hybridisation between the two major African schistosome species of humans. International Journal of Parasitology 43: 687–689. doi: 10.1016/j.ijpara.2013.04.001 23643461
82. Berry A, Moné H, Iriart X, Mouahid G, Abbo O, et al. (2014) Schistosomiasis haematobium, Corsica, France [letter]. Emerging Infectious Diseases 20: 1595–1597. doi: 10.3201/eid2009.140928 25153697
83. ECDC (2014) Rapid risk assessment: Local transmission of Schistosoma haematobium in Corsica, France– 16 May 2014. Stockholm.
84. Boissier J, Moné H, Mitta G, Bargues MD, Molyneux DH, et al. (2015) Schistosomiasis reaches Europe. Lancet Infectious Diseases 15: 757–758. doi: 10.1016/S1473-3099(15)00084-5 26122434
85. Messenger LA, Garcia L, Vanhove M, Huaranca C, Bustamante M, et al. (2015) Ecological host fitting of Trypanosoma cruzi TcI in Bolivia: mosaic population structure, hybridization and a role for humans in Andean parasite dispersal. Molecular Ecology 24: 2406–2422. doi: 10.1111/mec.13186 25847086
86. Messenger LA, Llewellyn MS, Bhattacharyya T, Franzén O, Lewis MD, et al. (2012) Multiple mitochondrial introgression events and heteroplasmy in Trypanosoma cruzi revealed by Maxicircle MLST and Next Generation Sequencing. PLoS Neglected Tropical Diseases 6: e1584. doi: 10.1371/journal.pntd.0001584 22506081
87. Miles MA, Llewellyn MS, Lewis MD, al. e (2009) The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology 136: 1509–1528. doi: 10.1017/S0031182009990977 19691868
88. Goodhead I, Capewell P, Bailey JW, Beament T, Chance M, et al. (2013) Whole-genome sequencing of Trypanosoma brucei reveals introgression between subspecies that is associated with virulence. mBio 4: e00197–13. doi: 10.1128/mBio.00197-13 23963174
89. WHO (2014) Global Burden of Disease Estimates for 2000–2012.
90. Kelly JM, Law JM, Chapman CJ, Van Eys GJ, Evans DA (1991) Evidence of genetic recombination in Leishmania. Molecular and Biochemical Parasitology 46: 253–263. 1656255
91. Inbar E, Akopyants NS, Charmoy M, Romano A, Lawyer P, et al. (2013) The Mating Competence of Geographically Diverse Leishmania major Strains in Their Natural and Unnatural Sand Fly Vectors. PLoS Genetics 9: e1003672. doi: 10.1371/journal.pgen.1003672 23935521
92. Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, et al. (2014) Genomic confirmation of hybridisation and recent Inbreeding in a vector-isolated Leishmania population. PLoS Genetics 10: e1004092. doi: 10.1371/journal.pgen.1004092 24453988
93. Volf P, Benkova I, Myskova J, Sadlova J, Campino L, et al. (2007) Increased transmission potential of Leishmania major/Leishmania infantum hybrids. Intenational Journal for Parasitology 37: 589–593.
94. Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, et al. (2015) Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347: 1258524. doi: 10.1126/science.1258524 25431491
95. World Health Organization. Malaria 2015 [updated 2015; cited 2015 23 June]. http://www.who.int/malaria/en/.
96. Manguin S, Carnivale P, Mouchet J (2008) Biodiversity of Malaria in the World; John Libbey Eurotext, editor. Paris, France
97. Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, et al. (2015) Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes. Science 347: 1258522. doi: 10.1126/science.1258522 25554792
98. Lee Y, Marsden CD, Nieman C, Lanzaro GC (2014) A new multiplex SNP genotyping assay for detecting hybridization and introgression between the M and S molecular forms of Anopheles gambiae. Molecular Ecology Resources 14: 297–305. doi: 10.1111/1755-0998.12181 24119184
99. Mawejje HD, Wilding CS, Rippon EJ, Hughes A, Weetman D, et al. (2013) Insecticide resistance monitoring of field-collected Anopheles gambiae s.l. populations from Jinja, eastern Uganda, identifies high levels of pyrethroid resistance. Medical and Veterinary Entomology 27: 276–283. doi: 10.1111/j.1365-2915.2012.01055.x 23046446
100. Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, et al. (2012) Impact of pyrethroid resistance on operational malaria control in Malawi. Proceedings of the National Academy of Sciences 109: 19063–19070.
101. Clarkson CS, Weetman D, Essandoh J, Yawson AE, Maslen G, et al. (2014) Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation. Nat Commun 5: 4248. doi: 10.1038/ncomms5248 24963649
102. Norris LC, Main BJ, Lee Y, Collier TC, Fofana A, et al. (2015) Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proceedings of the National Academy of Sciences 112: 815–820.
103. Weetman D, Steen K, Rippon E, Mawejje H, Donnelly M, et al. (2014) Contemporary gene flow between wild An. gambiae s.s. and An. arabiensis. Parasites & Vectors 7: 345.
104. Choochote W, Min G-S, Intapan P, Tantrawatpan C, Saeung A, et al. (2014) Evidence to support natural hybridization between Anopheles sinensis and Anopheles kleini (Diptera: Culicidae): possibly a significant mechanism for gene introgression in sympatric populations. Parasites & Vectors 7: 36.
105. Menge D, Guda T, Zhong D, Pai A, Zhou G, et al. (2005) Fitness consequences of Anopheles gambiae population hybridization. Malaria Journal 4: 44. 16174295
106. Mancini E, Spinaci MI, Gordicho V, Caputo B, Pombi M, et al. (2015) Adaptive Potential of Hybridization among Malaria Vectors: Introgression at the Immune Locus TEP1 between Anopheles coluzzii and A. gambiae in ‘Far-West’ Africa. PLoS ONE 10: e0127804. doi: 10.1371/journal.pone.0127804 26047479
107. Pates HV, Curtis CF, Takken W (2014) Hybridization studies to modify the host preference of Anopheles gambiae. Medical and Veterinary Entomology 28: 68–74. doi: 10.1111/mve.12070 25171608
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 9
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Fiat Luc: Bioluminescence Imaging Reveals In Vivo Viral Replication Dynamics
- Knocking on Closed Doors: Host Interferons Dynamically Regulate Blood-Brain Barrier Function during Viral Infections of the Central Nervous System
- Epicellular Apicomplexans: Parasites “On the Way In”
- Global Analysis of Mouse Polyomavirus Infection Reveals Dynamic Regulation of Viral and Host Gene Expression and Promiscuous Viral RNA Editing