Asymptomatic Spondylotic Cervical Cord Compression
Authors:
I. Kovalová 1; J. Bednařík 1,2; M. Keřkovský 2,3; B. Adamová 1,2; Z. Kadaňka 1
Authors place of work:
Neurologická klinika LF MU a FN Brno
1; CEITEC – Středoevropský technologický institut MU, Brno
2; Radiologická klinika LF MU a FN Brno
3
Published in the journal:
Cesk Slov Neurol N 2015; 78/111(1): 24-33
Category:
Review Article
doi:
https://doi.org/10.14735/amcsnn201524
Summary
Cervical spinal stenosis may lead to cervical cord compression and represents the most important mechanical factor in pathophysiology of cervical spondylotic myelopathy. Medullar tissue is, however, rather resistant to compression and development of symptomatic myelopathy occurs only when higher degree stenosis is present and in combination with other pathophysiological factors, mainly dynamic compression and trauma. Asymptomatic spondylotic cervical cord compression (ASCCC) is a quite frequent finding in older population above the age of fifty. However, reliability of the methods used to verify and quantify cervical stenosis and cervical cord compression is low and clear predictors of development of symptomatic myelopathy and related indication of potential preventive surgical decompression in ASCCC have not been determined yet. The overview discusses the most frequently used methods to establish cervical spinal stenosis and cervical cord compression using imaging methods. Radiogram and especially computed tomography are important for verification of cervical spinal stenosis, while magnetic resonance imaging (MRI) is a preferable method to detect cervical cord compression. The cross‑ sectional spinal cord area and T2 MRI spinal cord hyperintensity are among the parameters considered to be the most closely correlated with clinical manifestation of spinal cord compression. Among newly introduced imaging modalities, MRI diffusion tensor imaging seems to be the most promising one. The presence of symptomatic radiculopathy and abnormality of motor and somatosensory evoked potentials are among generally accepted predictors of symptomatic myelopathy. The importance of imaging methods as predictors of symptomatic myelopathy development as well as benefits of preventive surgical decompression in ASCCC individuals with high risk of developing symptomatic myelopathy is to be established in future studies.
Key words:
cervical spinal stenosis – cervical spondylotic myelopathy – asymptomatic spondylotic cervical cord compression – magnetic resonance imaging – diffusion tensor imaging –computed tomography
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Zdroje
1. Matsumoto M, Fujimura Y, Suzuki N, Nishy Y, Nakamura M, Zabe Y et al. MRI and cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg Br 1998; 80(1): 19– 24.
2. Stookey B. Compression of the spinal cord due to ventral extradural cervical chondromas. Arch Neurol Psychiatry 1928; 20: 275– 291.
3. Baptiste DC, Fehlings MG. Pathophysiology of cervical myelopathy. Spine J 2006; 6 (Suppl 6): 190S– 197S.
4. al‑ Mefty O, Harkey HL, Marawi I, Haines DE, Peeler DF, Wilner HI et al. Experimental chronic compressive cervical myelopathy. J Neurosurg 1993; 79(4): 550– 561.
5. Harkey HL, al‑ Mefty O, Marawi I, Peeler DF, Haines DE, Alexander LF. Experimental chronic compressive cervical myelopathy: effects of decompression. J Neurosurg 1995; 83(2): 336– 341.
6. Kim P, Haisa T, Kawamoto T, Kirino T, Wakai S. Delayed myelopathy induced by chronic compression in the rat spinal cord. Ann Neurol 2004; 55(4): 503– 511.
7. Bednarik J, Kadanka Z, Dusek L, Novotny O, Surelova D, Urbanek I et al. Presymptomatic spondylotic cervical cord compression. Spine (Phila Pa 1976) 2004; 29(20): 2260– 2269.
8. Bednarik J, Kadanka Z, Dusek L, Kerkovsky M, Vohanka S, Novotny O et al. Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur Spine J 2008; 17(3): 421– 431. doi: 10.1007/ s00586‑ 008‑ 0585‑ 1.
9. Teresi LM, Lufkin RB, Reicher MA, Moffit BJ, Vinuela FV, Wilson GM et al. Asymptomatic degenerative disc disease and spondylosis of the cervical spine: MR imaging. Radiology 1987; 164(1): 83– 88.
10. Bednařík J, Sládková D, Kadaňka Z, Dušek L, Keřkovský M, Voháňka S et al. Are subjects with spondylotic cervical cord encroachment at increased risk of cervical spinal cord injury after minor trauma? J Neurol Neurosurg Psychiatry 2011; 82(7): 779– 781. doi: 10.1136/ jnnp.2009.198945.
11. Aebli N, Tabea B, Rüegg TB, Wicki AG, Petrou N, Krebs J. Predicting the risk and severity of acute spinal cord injury after a minor trauma to the cervical spine. Spine J 2013; 13(6): 597– 604. doi: 10.1016/ j.spinee.2013.02.006.
12. Maus TP. Imaging of spinal stenosis: neurogenic intermittent claudication and cervical spondylotic myelopathy. Radiol Clin North Am 2012; 50(4): 651– 679. doi: 10.1016/ j.rcl.2012.04.007.
13. Edwards WC, LaRocca H. The developmental segmental sagittal diameter of the cervical spinal patients with cervical spondylosis. Spine (Phila Pa 1976) 1983; 8(1): 20– 27.
14. Miyazaki M1, Takita C, Yoshiiwa T, Itonaga I, Tsumura H. Morphological analysis of the cervical pedicles, lateral masses, and laminae in developmental canal stenosis. Spine (Phila Pa 1976) 2010; 35(24): E1381– 1385. doi: 10.1097/ BRS.0b013e3181e8958f.
15. Pavlov H, Torg J, Robie B, Jahre C. Cervical spinal stenosis: determination with vertebral body ratio method. Radiology 1987; 164(3): 771– 775.
16. Lee S H, Kim K T, Suk K S, Lee J H, Shin J H, So D H et al. Asymptomatic cervical cord compression in lumbar spinal stenosis patiens: a whole spine magnetic resonance imaging study. Spine (Phila Pa 1976) 2010; 35(23): 2057– 2063. doi: 10.1097/ BRS.0b013e3181f4588a.
17. Lindberg PG, Feydy A, Sanchez K, Rannou F, Maier MA. Measures of spinal canal stenosis and relationship to spinal cord structure in patients with cervical spondylosis. J Neuroradiol 2012; 39(4): 236– 242. doi: 10.1016/ j.neurad.2011.09.004.
18. Naganawa T, Miyamoto K, Ogura H, Suzuki N, Shimizu K. Comparison of magnetic resonance imaging and computed tomogram‑ myelography for evaluation of cross sections of cervical spinal morphology. Spine (Phila Pa 1976) 2011; 36(1): 50– 56. doi: 10.1097/ BRS.0b013e3181cb469c.
19. Song KJ, Choi BW, Kim GH, Kim JR. Clinical usefulness of CT‑ myelogram comparing with the MRI in degenerative cervical spinal disorders: is CTM still useful for primary diagnostic tool? J Spinal Disord Tech 2009; 22(5): 353– 357. doi: 10.1097/ BSD.0b013e31817df78e.
20. Fehlings MG, Furlan JC, Massicotte EM, Arnold P, Aarabi B, Harrop J et al. Interobserver and intraobserver reliability of maximum canal compromise and spinal cord compression for evaluation of acute traumatic cervical spinal cord injury. Spine (Phila Pa 1976) 2006; 31(15): 1719– 1725.
21. Karpova A, Arun R, Davis AM, Kulkarni AV, Mikulis DJ, Sooyong C et al. Reliability of quantitative magnetic resonance imaging methods in the assessment of spinal canal stenosis and cord compression in cervical myelopathy. Spine (Phila Pa 1976) 2013; 38(3): 245– 252. doi: 10.1097/ BRS.0b013e3182672307.
22. Shimomura T, Sumi M, Nishida K, Maeno K, Tadokoro K, Miyamoto H et al. Prognostic factors for deterioration of patients with cervical spondylotic myelopathy after nonsurgical treatment. Spine 2007; 32(22): 2474– 2479.
23. Kameyama T, Hashizume Y, Ando T, Takahashi A, Yanagi T, Mizuno J. Spinal cord morphology and pathology in ossification of the posterior longitudinal ligament. Brain 1995; 118(1): 263– 278.
24. Zhang L, Zeitoun D, Rangel A, Lazennec JY, Catonné Y, Pascal‑ Moussellard H. Preoperative evaluation of the cervical spondylotic myelopathy with flexion‑ extension magnetic resonance imaging: about a prospective study of fifty patients. Spine (Phila Pa 1976) 2011; 36(17): E1134– E1139. doi: 10.1097/ BRS.0b013e3181f822c7.
25. Muhle C, Weinert D, Falliner A, Wiskirchen J, Metzner J, Baumer M et al. Dynamic changes of the spinal canal in patients with cervical spondylosis at flexion and extension using magnetic resonance imaging. Invest Radiol 1998; 33(8): 444– 449.
26. Aebli N, Wicki AG, Rüegg TB, Petrou N, Eisenlohr H, Krebs J. The Torg‑ Pavlov ratio for the prediction of acute spinal cord injury after a minor trauma to the cervical spine. Spine J 2013; 13(6): 605– 612. doi: 10.1016/ j.spinee.2012.10.039.
27. Iizuka H, Takahashi K, Tanaka S, Kawamura K, Okano Y, Oda H. Predictive factors of cervical spondylotic myelopathy in patients with lumbar spinal stenosis. Arch Orthop Trauma Surg 2012; 132(5): 607– 611. doi: 10.1007/ s00402‑ 012‑ 1465‑ z.
28. Prasad SS, O’Malley M, Caplan M, Shackleford IM, Pydisetty RK. MRI measurements of the cervical spine and their correlation to Pavlov’s ratio. Spine (Phila Pa 1976) 2003; 28(12): 1263– 1268.
29. Okada Y, Ikata T, Katoh S, Yamada H. Morphologic analysis of the cervical spinal cord, dural tube, and spinal canal by magnetic resonance imaging in normal adults and patients with cervical spondylotic myelopathy. Spine (Phila Pa 1976) 1994; 19(20): 2331– 2335.
30. Kadanka Z, Kerkovský M, Bednarik J, Jarkovský J. Cross‑ sectional transverse area and hyperintensities on MRI in relation to the clinical picture in cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2007; 32(23): 2573– 2577.
31. Takahashi M, Yamashita Y, Sakamoto Y, Kojima R. Chronic cervical cord compression: clinical significance of increased signal intensity on MR images. Radiology 1989; 173(1): 219– 224.
32. Ramanauskas WL, Wilner HI, Metes JJ, Lazo A, Kelly JK. MR imaging of compressive myelomalacia. J Comput Assist Tomogr 1989; 13(3): 399– 404.
33. Ozawa H, Sato T, Hyodo H, Ishii Y, Morozumi N, Koizumi Y et al. Clinical significance of intramedullary Gd‑ DTPA enhancement in cervical myelopathy. Spinal Cord 2010; 48(5): 415– 422. doi: 10.1038/ sc.2009.152.
34. Floeth FW, Stoffels G, Herdmann J, Eicker S, Galldiks N, Rhee S et al. Prognostic value of 18F‑ FDG PET in monosegmental stenosis and myelopathy of the cervical spinal cord. J Nucl Med 2011; 52(9): 1385– 1391. doi: 10.2967/ jnumed.111.091801.
35. Facon D, Ozanne A, Fillard P, Lepeintre JF, Tournoux‑ Facon C, Ducreux D. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol 2005; 26(6): 1587– 1594.
36. Kara B, Celik A, Karadereler S, Ulusoy L, Ganiyusufoglu K, Onat L et al. The role of DTI in early detection of cervical spondylotic myelopathy: a preliminary study with 3– T MRI. Neuroradiology 2011; 53(8): 609– 616. doi: 10.1007/ s00234‑ 011‑ 0844‑ 4.
37. Budzik JF, Balbi V, Le Thuc V, Duhamel A, Assaker R, Cotten A. Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol 2011; 21(2): 426– 433. doi: 10.1007/ s00330‑ 010‑ 1927‑ z.
38. Kerkovsky M, Bednarik J, Dusek L, Sprlákova‑ Pukova, Urbanek I, Mechl M et al. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine (Phila Pa 1976) 2012; 37(1): 48– 56. doi: 10.1097/ BRS.0b013e31820e6c35.
39. Dvorak J, Sutter M, Hermann J. Cervical myelopathy: clinical and neurophysiological evaluation. Eur Spine J 2003; 12 (Suppl 2): S181– S187.
40. Lee MJ, Cassinelli EH, Riew KD. Prevalence of cervical spine stenosis. Anatomic study in cadavers. J Bone Joint Surg Am 2007; 89(2): 376– 380.
41. Hayashi H, Okada K, Hamada M, Tada K, Ueno R. Etiologic factors of myelopathy. A radiographic evaluation of the aging changes in the cervical spine. Clin Orthop Relat Res 1987; 214: 200– 209.
42. Bednarik J, Kerkovsky M, Kadanka Z, Kadanka Z jr, Nemec M, Kovalova I et al. Prevalence and imaging characteristics of asymptomatic and symptomatic spondylotic cervical spinal cord compression. Eur J Neurol 2014; 21 (Suppl 1): 243.
43. Murphy DR, Coulis CHM, Gerrard JK. Cervical spondylosis with spinal cord encroachment: should preventive surgery be recommended? Chiropr Osteopat 2009; 17: 8. doi: 10.1186/ 1746‑ 1340‑ 17‑ 8.
44. Bednařík J, Kadaňka Z, Voháňka S, Novotný O, Surelová D, Filipovicová D et al. The value of somatosensory and motor evoked potentials in pre‑clinical spondylotic cervical cord compression. Eur Spine J 1998; 7(6): 493– 500.
45. Wilson JR, Barry S, Fischer DJ, Skelly AC, Arnold PM, Riew KD et al. Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/ or ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 2013; 38 (Suppl 1): S37– S54.
46. Atkins D, Best D, Briss PA, Eccles M, Falck‑ Ytter Y, Flottorp S et al. Grading quality of evidence and strength of recommendations. BMJ 2004; 328(7454): 1490.
47. Norvell DC, Dettori JR, Skelly AC, Riew KD, Chapman JR, Anderson PA. Methodology for the systematic reviews on an adjacent segment pathology. Spine (Phila Pa 1976) 2012; 37 (Suppl 22): S10– S17. doi: 10.1097/ BRS.0b013e31826cd9c8.
48. Song T, Chen WJ, Yang B, Zhao HP, Huang JW, Cai MJ et al. Diffusion tensor imaging in the cervical spinal cord. Eur Spine J 2011; 20(3): 422– 428. doi: 10.1007/ s00586‑ 010‑ 1587‑ 3.
49. Foo D. Spinal cord injury in forty‑ four patients with cervical spondylosis. Paraplegia 1986; 24(5): 301– 306.
50. Hughes JT, Brownell B. Spinal‑ cord damage from hyperextension injury in cervical spondylosis. Lancet 1963; 1(7283): 687– 690.
51. Regenbogen VS, Rogers LF, Atlas SW, Kim KS. Cervical spinal cord injuries in patients with cervical spondylosis. AJR Am J Roentgenol 1986; 146(2): 277– 284.
52. Emery SE. Cervical spondylotic myelopathy: diagnosis and treatment. J Am Acad Orthop Surg 2001; 9(6): 376– 388.
53. Shedid D, Benzel EC. Cervical spondylosis anatomy: pathophysiology and biomechanics. Neurosurgery 2007; 60 (Suppl 1): S7– S13.
54. Epstein NE. Laminectomy for cervical myelopathy. Spinal Cord 2003; 41(6): 317– 327.
55. Lauryssen C, Riew KD, Wang JC. Severe cervical stenosis: operative treatment of continued conservative care? Spine Line 2006; 8: 21– 25.
56. Katoh S, Ikata T, Hirai N, Okada Y, Nakauchi K. Influence of minor trauma to the neck on the neurological outcome in patients with ossification of the posterior longitudinal ligament (OPLL) of the cervical spine. Paraplegia 1995; 33(6): 330– 333.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2015 Číslo 1
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Protocol of Diagnostic and Treatment of Hyponatremia and Hypernatremia in Neurocritical Care
- Mini‑Mental State Examination – Czech Normative Study
- Autoimmune Encephalitis
- Asymptomatic Spondylotic Cervical Cord Compression