#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Pos­sibilities of regulation of neuroim­mune and neuroendocrine proces­ses us­­ing physiother­apy


Authors: G. Angelová 1;  M. Bičíková 2;  L. Kolátorová 2;  P. Kučera 3;  M. Grünerová Lippertová 1;  K. Řasová 1
Authors place of work: Klinika rehabilitačního lékařství, 3. LF UK a FNKV v Praze 1;  Oddělení steroidů a proteofaktorů, Endokrinologický ústav v Praze 2;  Ústav imunologie, 3. LF UK v Praze 3
Published in the journal: Cesk Slov Neurol N 2018; 81(4): 410-413
Category: Review Article
doi: https://doi.org/10.14735/amcsnn2018410

Summary

The article provides an overview of the potential pos­sibilities of physiother­apy to interfere with the neuroendocrineim­mune system in patients with MS. Article describes the principles used in physiother­apy to start adaptation proces­ses of the im­mune and endocrine system.

Key words:
physiotherapy – hypothalamic-pituitary-adrenal axis – dehydroepiandrosterone – multiple sclerosis – long term potentiation – physical stress

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­ script met the ICMJE “uniform requirements” for biomedical papers


Zdroje

1. Di Filippo M, Sarchiel­li P, Picconi B et al. Neuroinflam­mation and synaptic plasticity: theoretical basis for a novel im­mune-centred therapeutic approach to neurological disorders. Trends Pharmacol Sci 2008; 29(8): 402–412. doi: 10.1016/j.tips.2008.06.005.

2. Heesen C, Gold SM, Hartmann S et al. Endocrine and cytokine responses to standardized physical stress in multiple sclerosis. Brain Behav Im­mun 2003; 17(6): 473–481.

3. Schulz KH, Gold SM, Witte J et al. Impact of aerobic train­­ing on im­mune-endocrine parameters neurotrophic factors quality of life and coordinative function in multiple sclerosis. J Neurol Sci 2004; 225(1–2): 11–18. doi: 10.1016/j.jns.2004.06.009.

4. Castel­lano V, Patel DI, White LJ. Cytokine responses to acute and chronic exercise in multiple sclerosis. J Appl Physiol (1985) 2008; 104(6): 1697–1702. doi: 10.1152/japplphysiol.00954.2007.

5. Rasova K, Dolezil D, Kalistova H et al. Physiother­apy as an im­munoactive ther­apy? A pilot study. Neuro Endocrinology Lett 2012; 33(1): 67–75.

6. Hof­fman-Goetz L, Pedersen BK. Exercise and the im­mune system: a model of the stress response? Im­munol Today 1994; 15(8): 382–387. doi: 10.1016/0167-5699(94)90177-5.

7. Walsh N, Gleeson M, Shephard RJ et al. Position statement. Part one: im­mune function and exercise. Exerc Im­munol Rev 2011; 17: 6–63.

8. Brines R, Hof­fman-Goetz L, Pedersen BK. Can you exercise to make your im­mune system fitter? Im­munol Today 1996; 17(6): 252–254.

9. Kern S, Ziems­sen T. Brain-im­mune com­munication psychoneuroim­munology of multiple sclerosis. Mult Scler 2008; 14(1): 6–21. doi: 10.1177/1352458507079657.

10. White LJ, Castel­lano V. Exercise and brain health – implications for multiple sclerosis: Part II – im­mune factors and stress hormones. Sports Med 2008; 38(3): 179–186.

11. Stef­ferl A, Linington C, Holsboer F et al. Susceptibility and resistance to experimental al­lergic encephalomyelitis: relationship with hypothalamic-pituitary-adrenocortical axis responsiveness in the rat. Endocrinology 1999; 140(11): 4932–4938. doi: 10.1210/endo.140.11.7109.

12. Heesen C, Schulz H, Schmidt M et al. Endocrine and cytokine responses to acute psychological stress in multiple sclerosis. Brain Behav Im­mun 2002; 16(3): 282–287. doi: 10.1006/brbi.2001.0628.

13. White LJ, Castel­lano V. Exercise and brain health – implications for multiple sclerosis: Part 1 – neuronal growth factors. Sports Med 2008; 38(2): 91–100.

14. Gold SM, Schulz KH, Hartmann S et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroim­munol 2003; 138(1–2): 99–105.

15. Boldyrev AA, Carpenter DO, Johnson P. Emerg­­ing evidence for a similar role of glutamate receptors in the nervous and im­mune systems. J Neurochem 2005; 95(4): 913–918. doi: 10.1111/j.1471-4159.2005.03456.x.

16. Onat F, Cavdar S. Cerebel­lar con­nections: hypo­thalamus. Cerebel­lum 2003; 2(4): 263–269. doi: 10.1080/ 14734220310016187.

17. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002; 25(6): 295–301.

18. Zhu JN, Yung WH, Kwok-Chong Chow B et al. The cerebel­lar-hypothalamic circuits: potential pathways underly­­ing cerebel­lar involvement in somatic-visceral integration. Brain Res Rev 2006; 52(1): 93–106. doi: 10.1016/j.brainresrev.2006.01.003.

19. Molinari M, Filippini V, Leggio MG. Neuronal plasticity of inter­related cerebel­lar and cortical networks. Neuro­science 2002; 111(4): 863–870.

20. Bicikova M, Tal­lová J, Hill M et al. Serum concentrations of some neuroactive steroids in women suf­fer­­ing from mixed anxiety-depres­sive disorder. Neurochem Res 2000; 25(12): 1623–1627.

21. Daoudal G, Deban­ne D. Long-term plasticity of intrinsic excitability: learn­­ing rules and mechanisms. Learn Mem 2003; 10(6): 456–465. doi: 10.1101/lm.64103.

22. Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain 2006; 129(7): 1659–1673. doi: 10.1093/brain/awl082.

23. Hampl R, Hill M, Stárka L. DHEA metabolites dur­­ing the life span. In: Morfin R (ed). DHEA and the brain. London and New York: Taylor & Francis 2002.

24. El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and bio­logical­ly active oxygenated metabolites of DHEA and epiandrosterone (EpiA)-recent reports. Steroids 2012; 77(1–2): 10–26. doi: 10.1016/j.steroids.2011.09.008.

25. Tel­lez N, Comabel­la M, Julià E et al. Fatigue in progres­sive multiple sclerosis is as­sociated with low levels of dehydroepiandrosterone. Mult Scler 2006; 12(4): 487–494. doi: 10.1191/135248505ms1322oa.

26. Bains JS, Oliet SH. Glia: they make your memories stick! Trends Neurosci 2007; 30(8): 417–424. doi: 10.1016/j.tins.2007.06.007.

27. Baulieu E, Schumacher M. Progesterone as a neuroactive neurosteroid with special reference to the ef­fect of progesterone on myelination. Steroids 2000; 65(10–11): 605–612.

28. Stárka L, Dušková M, Hill M. Dehydroepiandroster­one: a neuroactive steroid. J Steroid Biochem Mol Biol 2015; 145: 254–260. doi: 10.1016/j.jsbmb.2014.03.008.

29. Corpéchot C, Robel P, Axelson M et al. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci U S A 1981; 78(8): 4704–4707.

30. Li A, Bigelow JC. The 7-hydroxylation of dehydroepiandrosterone in rat brain. Steroids 2010; 75(6): 404–410. doi: 10.1016/j.steroids.2010.02.003.

31. Kümpfel T, Then Bergh F, Friess E et al. Dehydroepiandrosterone response to the adrenocorticotropin test and the combined dexamethasone and corticotropin-releas­­ing hormone test in patients with multiple sclerosis. Neuroendocrinology 1999; 70(6): 431–438. doi: 10.1159/000054505.

32. Doostzadeh J, Cotil­lon AC, Benalychérif A et al. Inhibition studies of dehydroepiandrosterone 7α- and 7β-hydroxylation in mouse liver microsomes. Steroids 1998; 63(11): 608–614.

33. Doostzadeh J, Morfin R. Studies of the enzyme complex responsible for pregnenolone and dehydroepiandrosterone 7α-hydroxylation in mouse tis­sues. Steroids 1996; 61(10): 613–620.

34. Akwa Y, Morfin R, Robel P et al. Neurosteroid metabolism. 7 alpha-Hydroxylation of dehydroepiandroster­one and pregnenolone by rat brain microsomes. Biochem J 1992; 288(3): 959–964.

35. Morfin R, Lafaye P, Cotil­lon AC et al. 7a-Hydroxy-Dehydroepiandrosterone and Im­mune Response. Ann NY Acad Sci 2000; 917: 971–982.

36. Hampl R, Hill M, Sterzl I et al. Im­munomodulatory 7-hydroxylated metabolites of dehydroepiandrosterone are present in human semen. J Steroid Biochem Mol Biol 2000; 75: 273–276.

37. Pelis­sier MA, Trap C, Malewiak MI et al. Antioxidant ef­fects of dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat colon intestine and liver. Steroids 2004; 69(2): 137–144. doi: 10.1016/j.steroids.2003.12.006.

38. Akwa Y, Young J, Kabbadj K et al. Neurosteroids: bio­synthesis metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J Steroid Biochem Mol Biol 1991; 40(1–3): 71–81.

39. Jel­linck H, Croft G, McEwen BS et al. Metabolism of dehydroepiandrosterone by rodent brain cell lines: Relationship between 7-hydroxylation and aromatization. J Steroid Biochem Mol Biol 2005; 93(1): 81–86. doi: 10.1016/j.jsbmb.2004.11.008.

40. Bicikova M, Ripová D, Hill M et al. Plasma levels of 7-hydroxylated dehydroepiandrosterone (DHEA) metabolites and selected amino-thiols as discriminatory tools of Alzheimer‘s dis­ease and vascular dementia. Clin Chem Lab Med 2004; 42(5): 518–524. doi: 10.1515/CCLM.2004.088.

41. Morfin R, Stárka L. Neurosteroid 7-hydroxylation products in the brain. Int Rev Neurobio­l 2001; 46: 79–95.

42. Friess E, Schif­felholz T, Steckler T et al. Dehydroepiandrosterone – a neurosteroid. Eur J Clin Invest 2000; 30 (Suppl 3): 46–50.

43. Al­lolio B, Arlt W. DHEA treatment: myth or reality? Trends Endocrinol Metab 2002; 13(7): 288–294.

44. Schumacher M, Weil­l-Engerer S, Liere P et al. Steroid hormones and neurosteroids in normal and pathological ag­­ing of the nervous system. Prog Neurobio­l 2003; 71(1): 3–29.

45. Jandova D, Bicikova M, Hill M et al. Health resort treatment improved the neurosteroid profile in thyroidectomized women. Endocr Regul 2008; 42(1): 17–22.

46. Jandová D, Bičíková M, Čeřovská I et al. Hormonální změny u thyreoidektomovaných žen v rámci následné rehabilitační léčby. Rehabil Fyz Lék 2006; 13(1): 7–15.

Štítky
Paediatric neurology Neurosurgery Neurology

Článok vyšiel v časopise

Czech and Slovak Neurology and Neurosurgery

Číslo 4

2018 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#