The role of physical activity in the management of patients with Parkinson‘s disease
Authors:
M. Schön 1,2; I. Straka 3; M. Sedliak 4; J. Ukropec 1; P. Valkovič 3,5; B. Ukropcová 1,2,4
Authors place of work:
Biomedicínske centrum, Slovenská, akadémia vied, Bratislava, Slovensko
1; Ústav patologickej fyziológie, LF UK, v Bratislave, Slovensko
2; II. neurologická klinika LF UK a UNB, Bratislava, Slovensko
3; Katedra športovej kinantropológie, Fakulta telesnej výchovy a športu UK, v Bratislave, Slovensko
4; Ústav normálnej a patologickej, fyziológie, Centrum experimentálnej, medicíny, Slovenská akadémia vied, Bratislava, Slovensko
5
Published in the journal:
Cesk Slov Neurol N 2019; 82(5): 496-504
Category:
Review Article
doi:
https://doi.org/10.14735/amcsnn2019496
Summary
Parkinson‘s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by the progressive deterioration of motor as well as non-motor symptoms, including cognitive dysfunction, disorders of mood and sleep and gastrointenstinal symptoms. Physical activity is a modifiable well-established risk factor for PD and clinical intervention studies with regular exercise undoubtedly point to the beneficial effects of aerobic as well as strength exercise training in patients with PD. Physical training improves 1. motor state, balance and functional capacity of skeletal muscles, thus reducing the risk of falls; 2. physical fitness and general functional capacity of the patient; and 3. energy metabolism, reducing the risk of type 2 diabetes, which often accelerates progression of PD. Moreover, physical activity and physical training improve quality of life by ameliorating both motor and non-motor symptoms, thus slowing down disease progression. Regular physical activity and exercise, based on individualized prescription and performed under the supervision of an experienced physician or exercise physiologist, are recommended as an integral part in the management of a patient with PD.
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
M. Schön1,2, I. Straka3, M. Sedliak4, J. Ukropec1, P. Valkovič3,5, B. Ukropcová1,2,4
1 Biomedicínske centrum, Slovenská akadémia vied, Bratislava, Slovensko
2 Ústav patologickej fyziológie, LF UK v Bratislave, Slovensko
3 II. neurologická klinika LF UK a UNB, Bratislava, Slovensko
4 Katedra športovej kinantropológie, Fakulta telesnej výchovy a športu UK v Bratislave, Slovensko
5 Ústav normálnej a patologickej fyziológie, Centrum experimentálnej medicíny, Slovenská akadémia vied, Bratislava, Slovensko
doc. MUDr. Barbara Ukropcová, Ph.D.
Biomedicínske centrum Ústav experimentálnej endokrinológie
Slovenská akadémia vied
Dúbravská cesta 9
845 05 Bratislava
Slovensko
e-mail: barbara.ukropcova@savba.sk
Přijato k recenzi: 4. 3. 2019
Přijato do tisku: 2. 9. 2019
Keywords:
Parkinson’s disease – exercise – Physical activity
Zdroje
1. Cereda E, Barichella M, Pedrolli C et al. Diabetes and risk of Parkinson disease. Mov Disord 2013; 28(2): 2057. doi: 10.1002/ mds.25211.
2. Mantri S, Fullard ME, Duda JE et al. Physical activity in early Parkinson disease. J Parkinsons Dis 2018; 8(1): 107– 111. doi: 10.3233/ JPD-171218.
3. van Nimwegen M. Speelman AD, Hofman-van Rossum EJ et al. Physical inactivity in Parkinson disease. J Neurol 2011; 258(12): 2214– 2221. doi: 10.1007/ s00415-011-6097-7.
4. Müller J, Myers J. Association between physical fitness, cardiovascular risk factors, and Parkinson disease. Eur J Prevent Cardiol 2018; 25(13): 1409– 1415. doi: 10.1177/ 2047487318771168.
5. Canning CG, Sherrington C, Lord SR et al. Exercise for falls prevention in Parkinson disease: a randomized controlled trial. Neurology; 84(3): 304– 312. doi: 10.1212/ WNL.0000000000001155.
6. Qi Y, Takahashi N, Hileman SM et al. Adiponectin acts in the brain to decrease body weight. Nat Med 2004; 10(5): 524– 529. doi: 10.1038/ nm1029.
7. Iwabu M, Yamauchi T, Okada-Iwabu M et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/ SIRT1. Nature 2010; 464(7293): 1313– 1319. doi: 10.1038/ nature08991.
8. Earhart GM, Falvo MJ. Parkinson disease and exercise. Compr Physiol 2013; 3(2): 833– 848. doi: 10.1002/ cphy.c100047.
9. Kusminski CM, McTernan PG, Schraw T et al. Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia 2007; 50(3): 634– 642. doi: 10.1007/ s00125-006-0577-9.
10. Zhang D, Wang X, Lu XY. Adiponectin exerts neurotrophic effects on dendritic arborization, spinogenesis, and neurogenesis of the dentate gyrus of male mice. Endocrinology 2016; 157(7): 2853– 2869. doi: 10.1210/ en.2015-2078.
11. Biskup S, Gerlach M, Kupsch A et al. Genes associated with Parkinson syndrome. J Neurol 2008; 255 (Suppl 5): 8– 17. doi: 10.1007/ s00415-008-5005-2.
12. Xu Q, Park Y, Huang X et al. Physical activities and future risk of Parkinson disease. Neurology 2010; 75(4): 341– 348. doi: 10.1212/ WNL.0b013e3181ea1597.
13. Thacker EL, Chen H, Patel AV et al. Recreational physical activity and risk of Parkinson’s disease. Mov Disord 2008; 23(1): 69– 74. doi: 10.1002/ mds.21772.
14. Chen H, Zhang SM, Schwarzschild MA et al. Physical activity and the risk of Parkinson disease. Neurology 2005; 64(4): 664– 669. doi: 10.1212/ 01.WNL.0000151960.28687.93.
15. Yaffe K, Haan M, Blackwell T et al. Metabolic syndrome and cognitive decline in elderly latinos: findings from the Sacramento Area Latino Study of Aging Study. J Am Geriatr Soc 2007; 55(5): 758– 762. doi: 10.1111/ j.1532-5415.2007.01139.x.
16. Franceschi C. Inflammaging as a major characteristic of old people : can it be prevented or cured ? Nutr Rev 2007; 65 (12 Pt 2): S173– S176. doi: 10.1111/ j.1753-4887.2007.tb00358.x.
17. Kim TN, Choi KM. The implications of sarcopenia and sarcopenic obesity on cardiometabolic disease. J Cell Biochem 2015; 116(7): 1171– 1178. doi: 10.1002/ jcb.25077.
18. Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenie: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 2017; 35: 200– 221. doi: 10.1016/ j.arr.2016.09.008.
19. Sofic E, Lange KW, Jellinger K et al. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson disease. Neurosci Letters 1992; 142(2): 128– 130. doi: 10.1016/ 0304-3940(92)90355-b.
20. Banerjee R, Starkov AA, Beal MF et al. Biochimica et Biophysica Acta Mitochondrial dysfunction in the limelight of Parkinson disease pathogenesis. Biochim Biophys Acta 2009; 1792(7): 651– 663. doi: 10.1016/ j.bbadis.2008.11.007.
21. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 2015; 16(11): 660– 671. doi: 10.1038/ nrn4019.
22. Richter EA, Hargreaves M. Exercise, GLUT4 and skeletal muscle glucose uptake. Physiol Rev 2013; 93(3): 993– 1017. doi: 10.1152/ physrev.00038.2012.
23. Rowe GC, El-khoury R, Patten IS et al. PGC-1 a is Dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLOS One 2012; 7(7): e41817. doi: 10.1371/ journal.pone.0041817.
24. Kuroda K, Tatara K, Takatorige T et al. Effect of physical exercise on mortality in patients with Parkinson’s disease. Acta Neurol Scand 1992; 86(1): 55– 59. doi: 10.1111/ j.1600-0404.1992.tb08054.x.
25. Ahlskog JE. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 2011; 77(3): 288– 294. doi: 10.1212/ WNL.0b013e318225ab66.
26. Lau YS, Patki G, Das’Panja K. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci 2011; 33(7): 1264– 1274. doi: 10.1111/ j.1460-9568.2011.07626.x.
27. Schenkman M, Hall DA, Baron AE et al. Exercise for people in early- or mid-stage Parkinson disease: a 16-month randomized controlled trial. Phys Ther 2012; 92(11): 1395– 1410. doi: 10.2522/ ptj.20110472.
28. Miyai I, Fujimoto Y, Ueda Y et al. Treadmill training with body weight support: its effect on Parkinson’s disease. Arch Phys Med Rehabil 2000; 81(7): 849– 852. doi: 10.1053/ apmr.2000.4439.
29. Miyai I, Fujimoto Y, Yamamoto H et al. Long-term effect of body weight-supported treadmill training in Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil 2002; 83(10): 1370– 1373. doi: 10.1053/ apmr.2002.34603.
30. Ramazzina I, Bernazzoli B, Costantino C. Clinical interventions in aging dovepress systematic review on strength training in Parkinson’s disease: an unsolved question. Clin Interv Aging 2017; 12: 619– 628. doi: 10.2147/ CIA.S131903.
31. David FJ, Robichaud JA, Leurgans SE et al. Exercise improves cognition in Parkinson Disease: The PRET-PD randomized clinical trial. Mov Disord 2015; 30(12): 1657– 1663. doi: 10.1002/ mds.26291.
32. Prodoehl J, Rafferty M, David FJ et al. Two year exercise program improves physical function in Parkinson disease: the PRET-PD study. Neurorehabil Neural Repair 2015; 29(2): 112– 122. doi: 10.1177/ 1545968314539732.
33. Valls-Solé J, Pascual-Leone A, Brasil-Neto JP et al. Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology 1994; 44(4): 735– 741. doi: 10.1212/ wnl.44.4.735.
34. Carvalho A, Barbirato D, Araujo N et al. Comparison of strength training, aerobic training, and additional physical therapy as supplementary treatments for Parkinson’s disease: pilot study. Clin Interv Aging 2015; 10: 183– 191. doi: 10.2147/ CIA.S68779.
35. Cugusi L, Manca A, Dragone D et al. Nordic Walking for the management of people with Parkinson disease: a systematic review. PM R 2017; 9(11): 1157– 1166. doi: 10.1016/ j.pmrj.2017.06.021.
36. van Eijkeren FJ, Reijmers RS, Kleinveld MJ et al. Nordic walking improves mobility in Parkinson’s disease. Mov Disord 2008; 23(15): 2239– 2243. doi: 10.1002/ mds.22293.
37. Combs SA, Diehl MD, Chrzastowski C et al. Community-based group exercise for persons with Parkinson disease: a randomized controlled trial. NeuroRehabilitation 2013; 32(1): 117– 124. doi: 10.3233/ NRE-130828.
38. Duncan RP, Earhart GM. Randomized controlled trial of community-based dancing to modify disease progression in Parkinson disease. Neurorehabil Neural Repair 2012; 26(2): 132– 143. doi: 10.1177/ 1545968311421614.
39. McKee KE, Hackney ME. The effects of adapted tango on spatial cognition and disease severity in Parkinson’s disease. J Mot Behav 2013; 45(6): 519– 529. doi: 10.1080/ 00222895.2013.834288.
40. Hackney ME, Earhart GM. Effects of dance on movement control in Parkinson’s disease: a comparison of Argentine tango and American ballroom. J Rehabil Med 2009; 41(6): 475– 481. doi: 10.2340/ 16501977-0362.
41. Yang Y, Li X, Gong L et al. Tai Chi for improvement of motor function, balance and gait in Parkinson disease: a systematic review and meta-analyses. PLOS One 2014; 9(7): e102942. doi: 10.1371/ journal.pone.0102942.
42. Yang YR, Lee YY, Cheng SJ et al. Downhill walking training in individuals with Parkinson’s disease. Am J Phys Med Rehabil 2010; 89(9): 706– 714. doi: 10.1097/ PHM.0b013e3181e721c5.
43. Broeders M, Velseboer DC, de Bie R et al. Cognitive change in newly-diagnosed patients with Parkinson’s disease: a 5-year follow-up study. J Int Neuropsychol Soc 2013; 19(6): 695– 708. doi: 10.1017/ S1355617713000295.
44. Hely MA, Reid WG, Adena MA et al. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 2008; 23(6): 837– 844. doi: 10.1002/ mds.21956.
45. Oguh O, Eisenstein A, Kwasny M et al. Back to the basics: regular exercise matters in Parkinson’s disease: results from the National Parkinson Foundation QII registry study. Park Relat Disord 2014; 20(11): 1221– 1225. doi: 10.1016/ j.parkreldis.2014.09.008.
46. Tanaka K, Quadros AC Jr, Santos RF et al. Benefits of physical exercise on executive functions in older people with Parkinson’s disease. Brain Cogn 2009; 69(2): 435– 441. doi: 10.1016/ j.bandc.2008.09.008.
47. Cruise KE, Bucks RS, Loftus AM et al. Exercise and Parkinson’s: benefits for cognition and quality of life. Acta Neurol Scand 2011; 123(1): 13– 19. doi: 10.1111/ j.1600-0404.2010.01338.x.
48. da Silva FC, Iop RD, de Oliveira LC et al. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: a systematic review of randomized controlled trials of the last 10 years. PLoS One 2018; 13(2): e0193113. doi: 10.1371/ journal.pone.0193113.
49. Nyberg J, Aberg MA, Schiöler L et al. Cardiovascular and cognitive fitness at age 18 and risk of early-onset dementia. Brain 2014; 137 (Pt 5): 1514– 1523. doi: 10.1093/ brain/ awu041.
50. Kandiah N, Zainal NH, Narasimhalu K et al. Hippocampal volume and white matter disease in the prediction of dementia in Parkinson’s disease. Parkinsonism Relat Disord 2014; 20(11): 1203– 1208. doi: 10.1016/ j.parkreldis.2014.08.024.
51. Erickson KI, Prakash RS, Voss MW et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009; 19(10): 1030– 1039. doi: 10.1002/ hipo.20547, 10.1002/ hipo.20547.
52. Rodrigues de Paula F, Teixeira-Salmela LF, Coelho de Morais Faria CD et al. Impact of an exercise program on physical, emotional, and social aspects of quality of life of individuals with Parkinson’s disease. Mov Disord 2006; 21(8): 1073– 1077. doi: 10.1002/ mds.20763.
53. Elbers R, van Wegen EE, Rochester L et al. Is impact of fatigue an independent factor associated with physical activity in patients with idiopathic Parkinson’s disease? Mov Disord 2009; 24(10): 1512– 1518. doi: 10.1002/ mds.22664.
54. Riedel O, Klotsche J, Spottke A et al. Frequency of dementia, depression, and other neuropsychiatric symptoms in 1,449 outpatients with Parkinson’s disease. J Neurol 2010; 257(7): 1073– 1082. doi: 10.1007/ s00415-010-5465-z.
55. Kvam S, Kleppe CL, Nordhus IH et al. Exercise as a treatment for depression: a meta-analysis. J Affect Disord 2016; 202: 67– 86. doi: 10.1016/ j.jad.2016.03.063.
56. Gujral S, Aizenstein H, Reynolds CF et al. Exercise effects on depression: possible neural mechanisms. Gen Hosp Psychiatry 2017; 49: 2– 10. doi: 10.1016/ j.genhosppsych.2017.04.012.
57. Yuan TF, Paes F, Arias-Carrión O et al. Neural Mechanisms of exercise: anti-depression, neurogenesis, and serotonin signaling. CNS Neurol Disord Drug Targets 2015; 14(10): 1307– 1311. doi: 10.2174/ 1871527315666151111124402.
58. Wu P, Lee M, Huang T. Effectiveness of physical activity on patients with depression and Parkinson’ s disease : a systematic review. PLoS One 2017; 12(7): e0181515. doi: 10.1371/ journal.pone.0181515.
59. Krumpolec P, Vallova S, Slobodova L et al. Aerobic-strength exercise improves metabolism and clinical state in Parkinson’s disease patients. Front Neurol 2017; 8: 698. doi: 10.3389/ fneur.2017.00698.
60. Dereli EE, Yaliman A. Comparison of the effects of a physiotherapist- supervised exercise programme and a self-supervised exercise programme on quality of life in patients with Parkinson’ s disease. Clin Rehabil 2010; 24(4): 352– 362. doi: 10.1177/ 0269215509358933.
61. Ellis T, Latham NK, Deangelis TR et al. Feasibility of a virtual exercise coach to promote walking in community-dwelling persons with Parkinson Disease. Am J Phys Med Rehabil 2014; 92(6): 472– 485. doi: 10.1097/ PHM.0b013e31828cd466.
62. Ahlskog JE. Aerobic exercise: evidence for a direct brain effect to slow Parkinson disease progression. Mayo Clin Proc 2018; 93(3): 360– 372. doi: 10.1016/ j.mayocp.2017.12.015.
63. Alonso-Frech F, Sanahuja JJ, Rodriguez AM. Exercise and physical therapy in early management of Parkinson disease. Neurologist 2011; 17 (6 Suppl 1): S47– S53. doi: 10.1097/ NRL.0b013e31823968ec.
64. da Silva PG, Domingues DD, de Carvalho LA et al. Neurotrophic factors in Parkinson’s disease are regulated by exercise: evidence-based practice. J Neurol Sci 2016; 363: 5– 15. doi: 10.1016/ j.jns.2016.02.017.
65. Gerecke KM, Jiao Y, Pani A et al. Exercise protects against MPTP-induced neurotoxicity in mice. Brain Res 2010; 1341: 72– 83. doi: 10.1016/ j.brainres.2010.01.053.
66. Tillerson JL, Cohen AD, Caudle WM et al. Forced nonuse in unilateral parkinsonian rats exacerbates injury. J Neurosci 2002; 22(15): 6790– 6799. doi: 20026651.
67. Kordower JH, Bjorklund A. Trophic factor gene thera-py for Parkinson’s disease. Mov Disord 2013; 28(1): 96– 109. doi: 10.1002/ mds.25344.
68. Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res 2015; 60: 56– 64. doi: 10.1016/ j.jpsychires.2014.10.003.
69. Frazzitta G, Balbi P, Maestri R et al. The beneficial role of intensive exercise on Parkinson disease progression. Am J Phys Med Rehabil 2013; 92(6): 523– 532. doi: 10.1097/ PHM.0b013e31828cd254.
70. Marusiak J, Zeligowska E, Mencel J et al. Interval training-induced alleviation of rigidity and hypertonia in patients with Parkinson’s disease is accompanied by increased basal serum brain-derived neurotrophic factor: a repeated-measures, case series pilot study. J Rehabil Med 2015; 47(4): 372– 375. doi: 10.2340/ 16501977-1931.
71. Chauhan NB, Siegel GJ, Lee JM. Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain. J Chem Neuroanat 2001; 21(4): 277– 288. doi: 10.1016/ S0891-0618(01)00115-6.
72. Colcombe SJ, Kramer AF, Erickson KI et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci 2004; 101(9): 3316– 3321. doi: 10.1073/ pnas.0400266101.
73. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 2007; 30(9): 464– 472. doi: 10.1016/ j.tins.2007.06.011.
74. Marques-Aleixo I, Oliveira PJ, Moreira PI et al. Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms. Prog Neurobiol 2012; 99(2): 149– 162. doi: 10.1016/ j.pneurobio.2012.08.002.
75. Difrancisco-Donoghue J, Lamberg EM, Rabin E et al. Effects of exercise and B vitamins on homocysteine and glutathione in Parkinson disease : a randomized trial. Neurodegenerative Dis 2012; 10(1– 4): 127– 134. doi: 10.1159/ 000333790.
76. Chennaoui M, Drogou C, Geoffroy H et al. Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats. J Inflamm 2015; 12: 56. doi: 10.1186/ s12950-015-0102-3.
77. Reuter I, Harder S, Engelhardt M et al. The effect of exercise on pharmacokinetics and pharmacodynamics of levodopa. Mov Disord 2000; 15(5): 862– 868. doi: 10.1002/ 1531.
78. van Kessel SP, Frye AK, El-Gendy AO et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson disease. Nat Commun; 10(1): 310. doi: 10.1038/ s41467-019-08294-y.
79. Frazzitta G, Bertotti G, Morelli M et al. Rehabilitation improves dyskinesias in Parkinsonian patients : a pilot study comparing two different rehabilitative treatments. Neurorehabilitation 2012; 30(4): 295– 301. doi: 10.3233/ NRE-2012-0758.
80. Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sport 2015; 25 (Suppl 3): 1– 72. doi: 10.1111/ sms.12581.
81. Fisher BE, Wu AD, Salem GJ et al. The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson’s disease. Arch Phys Med Rehabil 2008; 89(7): 1221– 1229. doi: 10.1016/ j.apmr.2008.01.013.
82. Keus S, Munneke M, Graziano M et al. European Physiotherapy Guideline for Parkinson’ s Disease. Mov Disord 2013; 28 (Suppl 1): 1077
83. Matsumoto Y, Yanase D, Noguchi-Shinohara Met al. Blood-brain barrier permeability correlates with medial temporal lobe atrophy but not with amyloid-beta protein transport across the blood-brain barrier in Alzheimer’s disease. Dement Geriatr Cogn Disord 2007; 23(4): 241– 245. doi: 10.1159/ 000100019.
84. Gallo PM, Mendola NM. Exercise prescription recom-mendations for Parkinson’ s disease. Strength Cond J 2018; 40(5): 126– 133. doi: 10.1519/ SSC.0000000000000415.
85. American college of Sports Medicine. ACSM‘s guidelines for exercise testing and prescription. 9th ed. Philadelphia: Lippincott Williams & Wilkins 2014.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2019 Číslo 5
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Treatment of insomnia in the context of neuropathic pain
- Compressive neuropathies as an occupational disease
- Changes of paraspinal muscle morphology in patients with chronic non-specific low back pain
- Endoscopic surgery for lumbar disc herniation – the first experience