#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Biological and Non-biological Elimination Therapy of Acute Liver Failure. Experimental Study on Large Laboratory Animal


Authors: M. Ryska 1,2;  E. Lásziková 2,3;  T. Pantoflíček 1,2;  E. Kieslichová 4 ;  O. Ryska 2,5;  J. Pražák 6;  E. Koblihová 1,2;  J. Skibová 4
Authors‘ workplace: Chirurgická klinika 2. LF UK a ÚVN, Praha 1;  Centrum buněčné terapie a tkáňových náhrad 2. LF UK, Praha 2;  Oddělení anesteziologie a resuscitace ÚVN, Praha 3;  IKEM, Praha 4;  Chirurgická klinika 1. LF UK a IPVZ ILF, FN Na Bulovce, Praha 5;  Klinika anesteziologie, resuscitace a intenzivní péče 2. LF UK a FNM, Praha 6
Published in: Čas. Lék. čes. 2008; 147: 367-375
Category: Original Article

Overview

Background.
Development of biological and non–biological artificial liver devices in the previous 20 years enabled effective treatment of acute liver failure (ALF) of patients waiting for liver transplantation or for spontaneous liver parenchyma regeneration. Aim of the study was the evaluation of the effectiveness of biological (BAL – bioartificial liver) and non–biological (FPSA – Fractionated plasma separation and adsorption) methods in the treatment of experimental ALF on large laboratory animal. 

Methods and Results.
Surgical model of ALF with liver devascularization in pigs (weight 25–40 kg) was provided following monitoring of ALF markers (AST, ALT, bilirubin, ammoniac, glycaemia, INR) including intracranial pressure (ICP). Control group included animals without treatment of ALF. Results of both experimental groups were compared and statistically worked-out with that of controls by T-test and Mann-Whitney non–parametric test by EXCEL and QUATRO. BAL group: 10 pigs (weight 30 ± 5 kg) with ALF were treated by BAL with isolated hepatocytes. When plasma bilirubin was compared, significant differences (p < 0.05) in 6 and 9 hours interval were found favouring BAL group (18.1 vs. 13.1, 22.9 vs. 13.2 mmol/l). The value of ICP in both groups was no significant. Prometheus group: 14 pigs weight 35 kg (35 ± 5 kg) with the identical ALF were treated by Prometheus (FPSA). Level of serum bilirubin in experimental group when compared to control group was significantly lower (p < 0.01) at 6 hour interval 12.81 ± 6.54 vs. 29.84 ± 9.99 at 9 hour 11.94 ± 4.14 vs. 29.95 ± 12.36 and at 12 hour 13.88 ± 6.31 vs. 26.10 ± 12.23 mmol/l. No significant difference in serum ammonia level was found. ICP was significantly different from 9 hour to 12 hour interval in favour of FPSA group (p < 0.01): 9 hour 19.1 ± 4.09 vs. 24.1 ± 2.85, 10 hour 21.9 ± 3.63 vs. 25.1 ± 2.19, 11 hour 22.5 ± 3.98 vs. 26.3 ± 3.50 and 12 hour 24.0 ± 4.66 vs. 29.8 ± 5.88 mm Hg. 

Conclusions.
Significant improvement of bilirubin and ICP levels resulting from the treatment with fractionated plasma separation and adsorption (Prometheus) were observed in the case of experimental ALF. Except the bilirubin levels, bioartificial liver provided by O. liver Performer with isolated hepatocytes did not bring any significant improvement of laboratory markers, including ICP. 

Key words:
acute liver failure, large laboratory animal, bioartificial liver, FPSA, monitoring.


Sources

1. Trey, C., Davidson, C. S.: The management of fulminant hepatic failure. Prog. Liver. Dis., 1970, 3, s. 282–298.

2. Panek, L., Andreasen, B., Tygstrup, N.: Galactosamine elimination capacity as a prognostic index in patients with fulminant hepatic failure. Gut, 1980, 17, s. 959–964.

3. Ryska, M., Kieslichová, E., Pantoflíček, T. et al.: Devascularization Surgical Model of Acute Liver Failure in Minipigs. Eur. Surg. Res., 2004, 36, s. 179–184.

4. Ryska, M., Kieslichová, E., Pantoflíček, T. et al.: Chirurgický model akutního selhání jater u laboratorního miniprasete. Čes. Slov. Gastroent. Hepatol., 2004, 58, s. 83–88.

5. Ryska, M., Kieslichová, E., Pantoflíček, T. et al.: Model akutního selhání jater u miniprasete z hlediska chirurga a anesteziologa. Rozhl. Chir., 2004, 83, s. 436–442.

6. Kieslichová, E., Ryska, M., Pantoflíček, T. et al.: Hemodynamic Parameters in a Surgical Devascularization Model of Fulminant Hepatic Failure in the Minipig. Phys. Res., 2005, 54, s. 485–490.

7. Ryska, M., Kieslichová, E., Pantoflíček, T. et al.: Bioeliminace v léčbě akutního selhání jater v experimentu na velkém laboratorním zvířeti. Čes. Slov. Gastroent. Hepatol., 2006, 60, s. 157–162.

8. Ryska, M., Lásziková, E., Pantoflíček, T. et al.: Prometheus v léčbě akutního selhání jater v experimentu na velkém laboratorním zvířeti. Čes. Slov. Gastroent. Hepatol., 2007, 61, s. 297–303.

9. Ryska, M., Laszikova, E., Pantoflicek, T. et al.: Prometheus Significantly Decreases Intracranial Pressure on Acute Liver Failure. Experimental Study. ESR (in press).

10. Selen, P. O.: Preparation of isolated rat liver cells. Methods Cell Biol. 1976, 13, s. 29–83.

11. Stange, J., Ramlow, W., Mitzner, S. et al.: Dialysis against a recycled albumin solution enables the removal of albumin-bound toxins. Artur Organs, 1993, 17, s. 809–813.

12. Falkenhage, D., Strobl, W., Vogt, G. et al.: Fractionated plasma separation and absorption systém: a novel systém for blood purification to remove albumin bound substance. Artur Organs, 1999, 23, s. 81–86.

13. Monchi, M., Berghmans, D., Ledoux, D. et al.: Citrate vs. heparin for anticogulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive care med., 2004, 30, s. 260–265.

14. Hoofnagle, J. H., Carithers, R. L., Shapiro, C. et al.: Fulminant hepatic failure: summary of a workshop. Hepatology, 1995, 21, s. 240–252.

15. Detry, O., De Roover, A., Honoré, P. et al.: Brain edema and intracranial hypertension in fulminant elativ failure: pathophysiology and management. World J. Gastroenterol., 2006, 12, s. 7405–7412.

16. Williams, R.: The elusive goal of liver suport-quest for the Holy Gril. Clin. Med., 2006, 6, s. 482–487.

17. Flendrig, L. M., Calise, F., Di Florio, E. et al.: Significantly improved survival time in pigs with complete liver ischemia treated with a novel bioartificial liver. Int. J. Artif. Organs, 1999, 22, s. 701–708.

18. Cuervas-Mons, V., Colás, A., Rivera, J. A. et al.: In vivo efficacy of a bioartificial liver improving spontaneous recovery from fulminant hepatic failure: a controlled study in pigs. Transplantation, 2000, 69, s. 337–344.

19. Sheil, A. G. R., Sun, J., Wang, L. et al.: A biodialysis systém for liver support tested in a porcine hepatic failure model. Aust. N Z J Surg., 2000, 70, s. 127–131.

20. Gerlach, J. C., Encke, J., Hole, O. et al.: Bioreactor for a large scale hepatocyte in vitro perfusion. Transplantation, 1994, 58, s. 984–988.

21. Horslen, S. P., Hammel, J. M., Fristoe, L. W. et al.: Extracorporeal liver perfusion using human and pig livers for acute liver failure. Extracorporeal liver perfusion using human and pig livers for acute liver failure. Transplantation, 2000, 70, s. 1472–1478.

22. Levy, M. F., Crippin, J., Sutton, S. et al.: Liver allotransplantation after extracorporeal hepatic support with transgenic (hCD55/hCD59) porcine livers. Clinical results and lack of pig-to-human transmission of the porcine endogenous retrovirus. Transplantation, 2000, 69, s. 272–280.

23. Rozga, J., Holzman, M. D., Ro, M. S. et al.: Development of a hybrid bioarteficial liver. Artif. Organs, 1993, 21, s. 502–511.

24. Demetriou, A. A., Brown, R. S., Busuttil, R. W. et al.: Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann. Surg., 2004, 239, s. 660–670.

25. Hayes, P. C., Lee, A.: What progress with artificial livers? Lancet, 2001, 358, s. 1286–1287.

26. Flendrig, L. M., Calise, F., Di Florio, E. et al.: Significantly improved survival time in pigs with complete liver ischemia treated with a novel bioartificial liver. Int. J. Artif. Organs, 1999, 22, s. 701–708.

27. Cuervas-Mons, V., Colás, A., Rivera, J. A. et al.: In vivo efficacy of a bioartificial liver improving spontaneous recovery from fulminant hepatic failure: a controlled study in pigs. Transplantation, 2000, 69, s. 337–344.

28. Borra, M., Galavotti, D., Bellini, C. et al.: Advanced technology for extracorporeal liver support systém devices. Int. J. Artif. Organs., 2002, 25, s. 939–949.

29. Sosef, M. N., Abrahamse, L. S. L., Van de Kerkhove, M. P. et al.: Assesment of the AMC-bioartificial liver in the anhepatic pig. Transplantation 2002, 73, s. 204–209.

30. Naka, S., Takeshita, K., Yamamoto, T. et al.: Bioartificial liver support systém using porcine hepatocytes entrapped in a three-dimensional hollow fiber module with collagen gel: an evaluation in the swine acute liver failure model. Artif. Organs, 1999, 23, s. 822–828.

31. Sheil, A. G., Sun, J., Mears, D. C. et al.: Positive biochemical effects of a bioartificial liver support system (BALSS) in a porcine fulminant hepatic failure (FHF) model. Int. J. Artif. Organs, 1998, 21, s. 43–48.

32. Khalili, T. M., Navarro, A., Ting, P. et al.: Bioartificial liver treatment prolongs survival and lowers intracranial pressure in pigs with fulminant hepatic failure. Artif. Organs., 2001, 25, s. 566–570.

33. Sheil, A. G., Sun, J., Mears, D. C. et al.: Positive biochemical effects of a bioartificial liver support system (BALSS) in a porcine fulminant hepatic failure (FHF) model. Int. J. Artif. Organs, 1998, 21, s. 43–48.

34. O’Grady, J. G., Alexander, G. J., Hayllar, K. M. et al.: Early indicators of prognosis in fulminant hepatic failure. Gastroenterology, 1989, 97, s. 439–445.

35. Rifai, K., Ernst, T., Kretschmer, U. et al.: Prometheus – a new extracorporeal system for the treatment of liver failure. J. Hepatol., 2003, 39, s. 984–990.

36. Rifai, K., Ernst, T., Kretschmer, U. et al.: The Prometheus device for extracorporeal support of combined liver and renal failure. Blood Purif, 2005, 23, s. 298–302.

37. Aleman, W., Wolker, A., Evenepoel, P. et al.: Effect of the molecular adsorbent recirculating systém and Prometheus device on systemic haemodynamics and vasoactive agents in patiens with acute-on-chronic alcoholic liver failure. Crit care, 2006, 10, R108(do:10.1186/cc4985).

38. Stadlbauer, V., Krisper, P., Signet B et al.: Effect of extracorporeal liver support by MARS and Prometheus on serum cytokines in acute-on-chronic liver failure. Crit care, 2006, 10, R169(do:10.1186/cc5119).

39. Krisper, P., Haditsch, B., Stauber, R. et al.: In vivo quantification of liver dialysis: comparison of albumin dialysis and fractionated plasma separation. J. Hepatology, 2005, 43, s. 451–457.

40. Nyckowski, P., Skwarek, A., Zieniewicz, K. et al.: Orthotopic liver transplantation for fulminant hepatic failure. Transplant. Proc., 2006, 38, s. 219–220.

41. Evenepoel, P., Aleman, W., Wolker, A. et al.: Detoxifying capacity and kinetics of Prometheus – a new extracorporeal systém for the treatment of liver failure. Blood Purif., 2005, 23, s. 349–358.

42. Santoro, A., Faenza, S., Mancini, E. et al.: Prometheus systém: a technological support in liver failure. Transplant. Proc., 2006, 38, s. 1078–1082.

43. Sheil, A. G. R., Sun, J., Wang, L. et al.: A biodialysis system for liver support tested in a porcine hepatic failure model. Aust. N Z J Surg., 2000, 70, s. 127–131.

44. Carraro, P., Burighel, D., De Silvestro, G. et al.: Early prognostic biochemical indicators of fulminant hepatic failure. Int. J. Clin. Lab. Res., 1998, 28, s. 196–199.

45. Horak, J., Horky, J., Rabl, M.: Haemoperfusion through activeted charcoal in dogs with fulminant liver failure. Digestion, 1980, 20, s. 22–30.

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental Hygienist

Article was published in

Journal of Czech Physicians

Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#